原文:tensorflow学习笔记——图像识别与卷积神经网络

无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于 ,而且图像的分辨率也不会是固定的。二是现实生活中的物体类别很多,无论是 种还是 种都远远不够,而且一张图片中不会只出现一个种类的物体。为了更加贴近真实环境下的图像识别问题,由李飞飞教授带头整理的ImageNet很大程度上解决了这个问题。 ImageNet是一个 ...

2019-08-13 10:15 1 1865 推荐指数:

查看详情

卷积神经网络图像识别

卷积神经网络图像识别 我们介绍了人工神经网络,以及它的训练和使用。我们用它来识别了手写数字,然而,这种结构的网络对于图像识别任务来说并不是很合适。本文将要介绍一种更适合图像、语音识别任务的神经网络结构——卷积神经网络(Convolutional Neural Network, CNN)。说卷积 ...

Thu Jan 17 16:26:00 CST 2019 0 7743
CNN 卷积神经网络 手写数字 图像识别 (深度学习

@ 目录 ✌ 卷积神经网络手写数字图像识别 1、✌ 导入相关库 2、✌ 导入手写数据集 3、✌ 定义数据包装器 4、✌ 查看数据维度 5、✌ 定义卷积网络层 6、✌ 定义模型与损失函数、优化器 7、✌ 训练 ...

Wed Apr 28 05:11:00 CST 2021 0 257
基于cifar10实现卷积神经网络图像识别

过程: View Code 结果: 分析:   cifar10数据集比mnist数据集更完整也更复杂,基于cifar数据集进行10分类比mnist有更高的难度,整体的准确率和召回率都普遍偏低,但适当的增加迭代次数和卷积核的大小有助于提升 ...

Sat Dec 15 04:38:00 CST 2018 0 1471
卷积神经网络入门案例-数字图像识别

  卷积层的原理和优点     在普通的全连接神经网络基础上,加上了卷积层,卷积层可以把低级别的特征逐步提取成为高级别特征的能力,是实现图像识别、语音识别等人工智能应用的基本原理。所以,由于卷积层这个能自主从原始的数据开始逐步发现特征并最终解决问题的能力,所以卷积层特别适合处理像图片、视频、音频 ...

Wed Jul 31 00:34:00 CST 2019 0 1809
tensorflow学习笔记卷积神经网络最终笔记

  这已经是我的第五篇博客学习卷积神经网络了。之前的文章分别是:   1,Keras深度学习卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中留下一个印象,知道什么是卷积神经网络,而且主要是学习Keras,顺便走一下CNN的过程 ...

Fri Sep 20 03:33:00 CST 2019 0 1099
tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。 程序比较复杂,我就分成几个部分来叙述。 首先,下载并加载数据: 定义四个函数,分别用于初始化权值W,初始化偏置项b, 构建卷积层和构建池化层 ...

Fri Sep 09 00:31:00 CST 2016 11 57627
python: 神经网络实现MNIST图像识别

神经网络输入层神经单元个数:784 (图像大小28*28) 输出层 :10 (10个类别分类,即10个数字) 隐藏层个数 ...

Sun Sep 01 05:11:00 CST 2019 0 742
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM