Bert系列(一)——demo运行 Bert系列(二)——模型主体源码解读 Bert系列(三)——源码解读之Pre-trainBert系列(四)——源码解读之Fine-tune 转载自: https://www.jianshu.com/p/3d0bb34c488a [NLP自然语言处理 ...
https: daiwk.github.io posts nlp bert.html 目录 概述 BERT 模型架构 Input Representation Pre training Tasks Task : Masked LM Task : Next Sentence Prediction Pre training Procedure Fine tuning Procedure Compari ...
2019-07-29 10:14 0 758 推荐指数:
Bert系列(一)——demo运行 Bert系列(二)——模型主体源码解读 Bert系列(三)——源码解读之Pre-trainBert系列(四)——源码解读之Fine-tune 转载自: https://www.jianshu.com/p/3d0bb34c488a [NLP自然语言处理 ...
一、BertModel主入口 总结:Bert的输出最终有两个结果可用 sequence_output:维度【batch_size, seq_length, hidden_size】,这是训练后每个token的词向量。 pooled_output:维度 ...
一、注意力层(attention layer) 重要:本层主要就是根据论文公式计算token之间的attention_scores(QKT),并且做softmax之后变成attention_prob ...
自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明。 ...
https://www.jianshu.com/p/22e462f01d8c pre-train是迁移学习的基础,虽然Google已经发布了各种预训练好的模型,而且因为资源消耗巨大,自己再预训练也不现实(在Google Cloud TPU v2 上训练BERT-Base要花费 ...
一、Bert Model流程图 二、Bert所用Transformer内部结构图 三、Masked LM预训练示意图 四、Next Sentence Prediction预训练示意图 可视化一步步讲用bert进行情感分析:https ...
一、Masked LM get_masked_lm_output函数用于计算「任务#1」的训练 loss。输入为 BertModel 的最后一层 sequence_output 输出([batch_ ...
ELMo的概念也是很早就出了,应该是18年初的事情了。但我仍然是后知后觉,居然还是等BERT出来很久之后,才知道有这么个东西。这两天才仔细看了下论文和源码,在这里做一些记录,如果有不详实的地方,欢迎指出~ 文章目录前言一. ELMo原理1. ELMo整体模型结构2. 字符编码层3. biLMs ...