1、原根的定义: 原根,是一个数学符号。设m是正整数,a是整数,若a模m的阶等于φ(m)(m的欧拉函数),则称a为模m的一个原根。 阶:a和模m互质,使ad ≡1(mod m)成立的最小正整数d称为a对模m的阶。例如:22≡1(mod3),2对模3的阶为2。 假设一个数g对于P来说是原根 ...
分特判,一个puts 一个快速幂,不讲。 算法: 上次就讲了,可是应该还是有像 xuefen某 或 Dybal某 一样没听的。 用a inv b mod来表示分数的时候,这个分数值可加可乘 有空证明 像是一个dp题啊。 初状态是 方案数为 ,然后做乘法转移不就好了嘛 设dp i j 表示进行了i次操作后所得的值为j dp i j a k mod dp i j 复杂度O mod m Dybala的 ...
2019-07-27 17:57 11 235 推荐指数:
1、原根的定义: 原根,是一个数学符号。设m是正整数,a是整数,若a模m的阶等于φ(m)(m的欧拉函数),则称a为模m的一个原根。 阶:a和模m互质,使ad ≡1(mod m)成立的最小正整数d称为a对模m的阶。例如:22≡1(mod3),2对模3的阶为2。 假设一个数g对于P来说是原根 ...
时隔两三个月重新打$ntt$的时候,已经忘记了常见模数的原根。 想要回忆原根的求法,以备不时之需,然而也忘记了。 所以颓了大神$yxs$的证明博客,为了防止再次遗忘,来复读一遍大神的做法和证明。 做法: 因为原根往往很小,所以可以采用暴力枚举的方法。 然而直接暴力$check ...
题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\)。求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数。其中\(a_i\in S\ ...
换根dp的通法:1.第一次扫描时,任选一个点为根,在“有根树”上执行一次树形DP,也就在回溯时发生的,自底向上的状态转移。 2.第二次扫描时,从刚才选出的根出发,对整棵树执行一次dfs,在每次递归前进行自上向下的推导,计算出换根后的解。 例题POJ3585 Accumulation ...
浅谈换根DP 本篇随笔浅谈一下算法竞赛中的换根DP。 换根DP概念 换根DP其实是树形DP的一种延伸技巧或者说是方法。 它的使用范围是,对树上的每个点跑树形DP。这样的话,不用换根DP一点一点跑的复杂度就是\(O(n^2)\),必炸。那么换根DP应运而生。简单来讲,就是我们会通过推理 ...
一个数m如果有原根,则其原根个数为phi(phi(m))。特别地,对素数有phi(p)=p-1。 假设g是奇素数p的一个原根,则g^1,g^2,...,g^(p-1)在模p意义下两两不同,且结果恰好为1~p-1,由此可以定义“离散对数”,与连续数学中的对数有异曲同工之妙。 离散对数又叫 ...
阶:设a,p是整数,a和p互素,那么:使 成立的最小正整数n叫做a模p的阶. 原根:设m是正整数,a是整数,若a mod m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 假设一个数g是质数P的原根 ...
# 整数的阶 根据欧拉定理aφ(n)≡1(mod n)">aφ(n) ≡ 1 (mod n),其中a与n互质,aφ(n ...