现在每天产生的数据都是海量的,这些数据中既有高质量的也有很多垃圾,如何从这些海量的数据中洞察出这些数据的内在联系是我们机器学习的核心内容。如果光把数据丢在大家的面前,咱们肯定是无感的,无法获取这些数据的意义。为了能够更加直观的了解这些数据的一些特征,例如数据的分布情况,数据的趋势和走势,数据之间 ...
https: jalammar.github.io illustrated transformer The Illustrated Transformer Discussions:Hacker News points, comments ,Reddit r MachineLearning points, comments Translations:Chinese Simplified ,Korea ...
2019-07-26 14:05 0 592 推荐指数:
现在每天产生的数据都是海量的,这些数据中既有高质量的也有很多垃圾,如何从这些海量的数据中洞察出这些数据的内在联系是我们机器学习的核心内容。如果光把数据丢在大家的面前,咱们肯定是无感的,无法获取这些数据的意义。为了能够更加直观的了解这些数据的一些特征,例如数据的分布情况,数据的趋势和走势,数据之间 ...
图像语义分割预测标签可视化 前言 图像语义分割任务中,网络输出后经过概率化处理(sigmoid/softmax)和取索引(torch.argmax)后可以得到一个标签数组,标签的值为0/1/2/3...一个值代表一个类别。 这里记录一下输出结果的可视化方法。 方法 标签 ...
安装matplotlib和seaborn https://blog.csdn.net/Jia_jinjin/article/details/80428598 seaborn pairplot: ...
前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的。在小论文中主要研究了关于词性POS对输入序列的注意力机制。同时对比实验采取的是words的self-attention机制。 效果 下图主要包含两列 ...
一、可视化方法 条形图 饼图 箱线图(箱型图) 气泡图 直方图 核密度估计(KDE)图 线面图 网络图 散点图 树状图 小提琴图 方形图 三维图 二、交互式工具 Ipython、Ipython notebook Plotly ...
卷积神经网络的简单可视化 本次将进行卷积神经网络权重的简单可视化。 在本篇教程的前半部分,我们会首先定义一个及其简单的 CNN 模型,并手工指定一些过滤器权重参数,作为卷积核参数。 后半部分,我们会使用 FashionMNIST 数据集,并且定义一个 2 层的 CNN 模型,将模型训练 ...
1、介绍 最近一直在研究神经网络,实现论文,搭建模型,有时候不清楚每层设置的参数,十分头疼。偶然发现了一个可视化模型的工具Netron,在windows,mac,linux上都可以直接安装,也支持web上浏览,十分方便,这里简单记录下。Windows安装版的如下图所示。 2、使用方法 web ...
作者|FAIZAN SHAIKH 编译|VK 来源|Analytics Vidhya 介绍 深入学习中最具争议的话题之一是如何解释和理解一个经过训练的模型——特别是在医疗等高风险行业的背景下。“黑匣子”一词经常与深度学习算法联系在一起。如果我们不能解释模型是如何工作的,我们怎么能相信模型 ...