带权图的邻接矩阵中无连接的值为无限大最小生成树的算法:从一个顶点出发找到其他顶点的所有的边,放入优先列队,找到权值最小的,把它和它所到达的顶点放入树的集合中。再以终点作为源点找到所有到其他顶点的边(不包括已放入树中的顶点),放入优先队列中,再从中取最小的把它到达的顶点放入树的集合中(最小生成树 ...
原文链接:https: www.cnblogs.com guweiwei p .html 边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。 最小生成树 MST :权值最小的生成树。 生成树和最小生成树的应用:要连通n个城市需要n 条边线路。可以把边上的权值解释为线路的造价。则最小生成树表示使其造价最小的生成树。 构造网的最小生成树必须解决下面两个问题: ...
2019-07-17 16:25 0 427 推荐指数:
带权图的邻接矩阵中无连接的值为无限大最小生成树的算法:从一个顶点出发找到其他顶点的所有的边,放入优先列队,找到权值最小的,把它和它所到达的顶点放入树的集合中。再以终点作为源点找到所有到其他顶点的边(不包括已放入树中的顶点),放入优先队列中,再从中取最小的把它到达的顶点放入树的集合中(最小生成树 ...
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。 最小生成树(MST):权值最小的生成树。 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路。可以把边上的权值解释为线路的造价。则最小生成树表示使其造价最小的生成树。 构造 ...
学习了一个新的最小生成树的算法,Boruvka(虽然我不知道怎么读)。算法思想也是贪心,类似于Kruskal。 大致是这样的,我们维护图中所有连通块,然后遍历所有的点和边,找到每一个连通块和其他连通块相连的最小的一条边,然后把连通块合并起来,重复这个操作,直到剩下一整个连通块,最开始状态是每个点 ...
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。 给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。 由V中的全部n个顶点和E中n-1 ...
Prim算法求图的最小生成树(使用的图的数据结构是图的邻接矩阵存储表示) /* minCost数组:该数组是结构数组,即每个元素是一个结构类型。该结构有两个域:lowCost用来保存所有已经在*最小生成树中的顶点,到所有还没有在最小生成树中的顶点的所有权值中的最小的;vertax域用 * 来保存 ...
一.简介: 对于一个n个顶点的连通图,其最小生成树是指将所有顶点连接起来的权值之和的最小树,树中包含n个顶点和n-1条边.最小生成树常见的生成算法有普里姆算法和克鲁斯卡尔算法,它们分别基于顶点的角度和边的角度生成最小生成树. 声明:对于本文中实现图结构的各种类,详见:数据结构和算法 ...
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。 给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。 由V中的全部n个顶点和E中n-1 ...
关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了mst数组 mst[i]:这个数 ...