一、混淆矩阵 T和F代表是否预测正确,P和N代表预测为正还是负 这个图片我们见过太多次了,但其实要搞清楚我们的y值中的1定义是什么,这样就不会搞错TP、FP、FN、TN的顺序,比如说下面的混淆 ...
ACC, Precision and Recall 这些概念是针对 binary classifier 而言的. 准确率 accuracy 是指分类正确的样本占总样本个数的比例. 精确率 precision 是指分类正确的正样本占预测为正的样本个数的比例. 是针对预测而言的. 在信息检索领域称为查准率. 召回率 recall 是指分类正确的正样本占真正的正样本个数的比例. 是针对样本而言的. 在信 ...
2019-07-13 11:47 0 653 推荐指数:
一、混淆矩阵 T和F代表是否预测正确,P和N代表预测为正还是负 这个图片我们见过太多次了,但其实要搞清楚我们的y值中的1定义是什么,这样就不会搞错TP、FP、FN、TN的顺序,比如说下面的混淆 ...
主要内容 1.TPR、FPR、precision、recall、accuracy、ROC、AUC概念介绍 2.ROC曲线如何通过TPR、FPR得到 3.用sklearn.metric 如何计算TPR、FPR得到ROC曲线。用sklearn.metric 如何计算AUC ...
目录 结果表示方法 常规指标的意义与计算方式 ROC和AUC 结果表示方法 TP – True Positive FN – False Negative TN – True Negative FP – False Positive ...
1. Precision和Recall Precision,准确率/查准率。Recall,召回率/查全率。这两个指标分别以两个角度衡量分类系统的准确率。 例如,有一个池塘,里面共有1000条鱼,含100条鲫鱼。机器学习分类系统将这1000条鱼全部分类为“不是鲫鱼”,那么准确率也有90 ...
1.Precision, Recall 准确率 \(Accuracy = \frac{TP+TN}{TP+TN+FP+FN}\) 精确率(或命中率) \(Precision = \frac{TP}{TP+FP}\),预测为positive中,实际为positive的比例,反映分类器的准确性 ...
ROC曲线 ROC曲线的全称是“接收者操作特征曲线”(receiver operating characteristic curve),它是一种坐标图式的分析工具,用于: 选择最佳的信号侦测模型、舍弃次佳的模型。 在同一模型中设置最佳阈值。 ROC曲线渊源 ROC曲线起源于 ...
最近做了一些分类模型,所以打算对分类模型常用的评价指标做一些记录,说一下自己的理解。使用何种评价指标,完全取决于应用场景及数据分析人员关注点,不同评价指标之间并没有优劣之分,只是各指标侧重反映的信息不同。为了便于后续的说明,先建立一个二分类的混淆矩阵 ,以下各参数的说明都是针对二元分类 ...
一、前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结。 二、具体 1、混淆矩阵 混淆矩阵如图: 第一个参数true,false是指预测的正确性。 第二个参数true,postitives是指预测的结果。 相关公式: 检测正列的效果 ...