本文大致梳理了计算机视觉中图像分类的脉络,包括常用数据集、经典模型和性能对比。 1 图像分类常用数据集 以下是几种常用的分类数据集,难度依次递增。列举了各算法在各数据集上的性能排名。 MNIST,60k训练图像、10k测试图像、10个类别、图像大小1×28×28、内容是0-9手写数字 ...
一 图像分类定义 可以用一个简单的公式来描述图像分类的过程: 训练:通过训练集 x ,y ,..., xn,yn 来获得一个预测函数f,满足在训练集上的最小误差。 测试:向预测函数f输入一个从来没有见过的x,得到预测值y。 二 泛化能力 我们在训练的过程中,要注意所训练出来的模型的泛化能力。所谓泛化能力,就是要让模型认识不同形态 不同颜色等不同特征的同类事物,例如苹果,苹果有黄色的 绿色的 红色的 ...
2019-07-09 14:56 0 829 推荐指数:
本文大致梳理了计算机视觉中图像分类的脉络,包括常用数据集、经典模型和性能对比。 1 图像分类常用数据集 以下是几种常用的分类数据集,难度依次递增。列举了各算法在各数据集上的性能排名。 MNIST,60k训练图像、10k测试图像、10个类别、图像大小1×28×28、内容是0-9手写数字 ...
特征提取和分类是典型计算机视觉系统的两个关键阶段。视觉系统的准确性、稳健性和效率很大程度上取决于图像特征和分类器的质量。特征提取方法可以分为两个不同的类别,即基于手工的方法和基于特征学习的方法。分类器可以分为两组,即浅层模型和深层模型。 特征是任何独特的方面或特性,用于解决与特定应用相关 ...
2020-09-24 目前,计算机视觉是深度学习领域最热门的研究领域之一。计算机视觉实际上是一个跨领域的交叉学科,包括计算机科学(图形、算法、理论、系统、体系结构),数学(信息检索、机器学习),工程学(机器人、语音、自然语言处理、图像处理),物理学(光学 ),生物学(神经科学)和心理学(认知科学 ...
层会导致信息损失)且计算量相当的情况下,提供更大的感受野。 顺便一提,卷积结构的主要问题如下: ...
图像分割的评价标准:像素准确率PA、平均像素准确率MPA、平均交并比MIoU、频率权重交并比FWIoU; 参考 1. 论文笔记 | 基于深度学习的图像语义分割技术概述; 2. 深度学习计算机视觉图像分割领域指标mIoU(平均交并比)计算代码与逐行解析; 3. ...
概述 对于计算机视觉的应用现在是非常广泛的,但是它背后的原理其实非常简单,就是将每一个像素的值pixel输入到一个DNN中,然后让这个神经网络去学习这个模型,最后去应用这个模型就可以了。听起来是不是很简单,其实如果大家深入研究的话,这里面还是有很多内容去学习的,例如:咱们的图片大小 ...
。输入1个图像时,图像描述符将返回1个特征向量。主要用于图像分类。缺乏区分图像中不同对象的能力。 特征描 ...