正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/51030366)和学习率(详见http://blog.csdn.net ...
当我们在求解梯度下降算法的时候,经常会用到正规方程来求解w的值,这个时候就用到正规方程来求解是最快的方法,但是正规方程又是怎么来的呢 我们来看看:首先我们设我们的损失函数为MSE train,那么这个时候我们只需要对其求解偏导就好了,于是我们有 w MSE train 。具体推导过程如下如图所示,这里只做字母的解说,括号里的 train 代表的是训练集: 我们可以看到第一步我们首先把MSE tra ...
2019-07-07 20:18 0 1052 推荐指数:
正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/51030366)和学习率(详见http://blog.csdn.net ...
梯度下降与正规方程的比较: 梯度下降:需要选择学习率α,需要多次迭代,当特征数量n大时也能较好适用,适用于各种类型的模型 正规方程:不需要选择学习率α,一次计算得出,需要计算,如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为,通常来说当小于10000 时还是可以接受的,只适用于线性 ...
为了求得参数θ,也可以不用迭代的方法(比如梯度下降法对同一批数据一直迭代),可以采用标准方程法一次性就算出了θ,而且还不用feature scaling(如果feature不多的话,比如一万以下,用这种方法最好)。 标准方程法介绍: (1) 这里面,X的第一列是人为添加的,为了方便运算 ...
学习内容 状态方程的推导(关注的是声波的热力学过程):(1)推导思路:据热力学定律,质量一定的理想流体中,独立的热力学参数只有3个,这三个参数之间符合一定的热力学规律。这三个参数为压强、密度、熵值。(2)推导过程:有连续性方程可知,声波的质点运动会引起密度 ...
相对于不是很大的数据来说,正规方程相对于梯度下降运算更加的简便 直接上核心公式 代码实现: 结果 [[-173.50754254952682], [0.6238329654896275]] ...
第二种方法:正规方程法 这里有四个训练样本,以及四个特征变量x1,x2,x3,x4,观测结果是y,还是像以前一样,我们在列代价函数的时候,需要加上一个末尾参数x0,如下: 这样我们就可以通过下面这个公式得出参数θ最优解。 推导过程: 另一种方法: 训练样本 ...
前言 以下内容是个人学习之后的感悟,转载请注明出处~ 正规方程法 一、函数参数向量化 在计算机中,我们需要用同样的算法计算大量数据样本时,一般有两种方式:循环、参数向量化。 循环~,可想而知,计算量不是一般的大,不建议 ...
机器学习(2)之正规方程组 上一章介绍了梯度下降算法的线性回归,本章将介绍另外一种线性回归,它是利用矩阵求导的方式来实现梯度下降算法一样的效果。 1. 矩阵的求导 首先定义表示m×n的矩阵,那么对该矩阵进行求导可以用下式表示,可以看出求导后的矩阵仍然为m×n 这里要用到矩阵迹的特性 ...