原文:https://blog.csdn.net/hustchenze/article/details/79154139 Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩阵。与Numpy中的Array类似。Pytorch中的tensor又包括CPU上的数据类型和GPU ...
.查看数据类型 .类型转换 方法一:简单后缀转换 方法二:使用torch.type 函数 方法三:使用type as tensor 将tensor转换为指定tensor的类型 .tensor创建 指定维度和数据类型 ...
2019-07-07 11:34 0 8982 推荐指数:
原文:https://blog.csdn.net/hustchenze/article/details/79154139 Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩阵。与Numpy中的Array类似。Pytorch中的tensor又包括CPU上的数据类型和GPU ...
Pytorch中的Tensor常用的类型转换函数(inplace操作): (1)数据类型转换 在Tensor后加 .long(), .int(), .float(), .double()等即可,也可以用.to()函数进行转换,所有的Tensor类型可参考https ...
本文列举的框架源码基于PyTorch1.0,交互语 ...
1.基本概念 标量:就是一个数,是0维的,只有大小,没有方向 向量:是1*n的一列数,是1维的,有大小,也有方向 张量:是n*n的一堆数,是2维的,n个向量合并而成 ...
在Tensor后加 .long(), .int(), .float(), .double()等即可,也可以用.to()函数进行转换,所有的Tensor类型可参考https://pytorch.org/docs/stable/tensors.html ...
创建tensor: 1.numpy向量转tensor: a=np.array([2,2,2]) b=torch.from_numpy(a) 2.列表转tensor: a=torch.tensor([2,2]) b=torch.FloatTensor([2,2 ...
1.矩阵的转置 方法:t() 输出结果 transpose(维度下标1,维度下标2):任意两个维度之间的转换 输出结果 permute(维度的下标):所有维度之间的任意转换 输出结果 2.矩阵的四则运算 矩阵 ...
引言 本篇介绍tensor的维度变化。 维度变化改变的是数据的理解方式! view/reshape:大小不变的条件下,转变shape squeeze/unsqueeze:减少/增加维度 transpose/t/permute:转置,单次/多次交换 ...