想象一下,当mini-batch 是真个数据集的时候,是不是就退化成了 Gradient Descent,这样的话,反而收敛速度慢。你忽略了batch 增大导致的计算 batch 代价变大 ...
AI不惑境 学习率和batchsize如何影响模型的性能 大家好,这是专栏 AI不惑境 的第四篇文章,讲述学习率以及batchsize与模型性能的关系。 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考。如果说学习是一个从模仿,到追随,到创造的过程,那么到这个阶段,应该跃过了模仿和追随的阶段,进入了创造的阶段。从这个境界开始,讲述的问题可能不再有答案,更多的是激发大家一起来思考 ...
2019-06-19 23:46 0 3648 推荐指数:
想象一下,当mini-batch 是真个数据集的时候,是不是就退化成了 Gradient Descent,这样的话,反而收敛速度慢。你忽略了batch 增大导致的计算 batch 代价变大 ...
GOOD POST https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9 ...
代价敏感错误率 代价曲线 ...
率的参量。刚开始学习率较大,因此下降步长更大。随着点的下降,学习率变得越来越小,从而下降步长也变小。同 ...
在基于卷积神经网络的应用过程中,图像Resize是必不可少的一个步骤。通常原始图像尺寸比较大,比如常见监控摄像机出来的是1080P高清或者720P准高清画面,而网络模型输入一般没有这么大,像Yolo系列目标检测的网络模型输入大小一般为608*608/512*512 等等。那么如何将大尺寸图像输入 ...
五、衡量分类任务的性能指标 3、精准度与召回率 精准率(Precision)指的是模型预测为 Positive 时的预测准确度,其计算公式如下: 召回率(Recall)指的是我们关注的事件发生了,并且模型预测正确了的比值 ...
转载自知乎:Roofline Model与深度学习模型的性能分析 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体的计算平台(例如CPU / GPU / ASIC 等)才能展现自己的实力。此时,模型和计算平台的"默契程度"会决定模型的实际表现。Roofline ...
在不同层上设置不同的学习率,fine-tuning https://github.com/dgurkaynak/tensorflow-cnn-finetune ConvNets: AlexNet VGGNet ResNet AlexNet finetune ...