使用不同的低筒滤波器对图像进行模糊 使用自定义的率弄起对图像进行卷积(2D卷积) 2D卷积 与信号一样,我们也可以对2D图像实施低通滤波,高通滤波等。LPF帮助我们去除噪声,模糊图像。而HPF帮助我们找到图像边缘。 OpenCV提供的函数cv2.filter2D ...
由于种种原因,图像中难免会存在噪声,需要对其去除。噪声可以理解为灰度值的随机变化,即拍照过程中引入的一些不想要的像素点。噪声可分为椒盐噪声,高斯噪声,加性噪声和乘性噪声等,参见:https: zhuanlan.zhihu.com p 噪声主要通过平滑进行抑制和去除,包括基于二维离散卷积的高斯平滑,均值平滑,基于统计学的中值平滑,以及能够保持图像边缘的双边滤波,导向滤波算法等。下面介绍其具体使用 ...
2019-06-22 14:58 0 5461 推荐指数:
使用不同的低筒滤波器对图像进行模糊 使用自定义的率弄起对图像进行卷积(2D卷积) 2D卷积 与信号一样,我们也可以对2D图像实施低通滤波,高通滤波等。LPF帮助我们去除噪声,模糊图像。而HPF帮助我们找到图像边缘。 OpenCV提供的函数cv2.filter2D ...
1 图像平滑 图像平滑,一种图像空间滤波方法 (低通滤波),可对图像进行去噪 或 模糊化 (blurring) 以 3X3 的滤波器为例 (即 a=b=1),则矩阵 Mx 和 Mf 对应的元素乘积之和,就是 g(x, y) 其中,$ M_x = \begin{bmatrix ...
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理 ...
Goals 学习用不同低通滤波方法模糊图像(Blur imagess with various low pass filter) 用用定制的滤波器处理图像(Apply custom-made filters to images (2D convolution ...
。 Meanshift的这种思想可以应用于目标跟踪、图像平滑、边缘检测、聚类等,是一种适应性很好 ...
对于二维图片,可以对其进行傅里叶变换,获取图片的频谱信息。频谱有很多应用,包括显著性检测,卷积定理,频率域滤波等,下面是图片傅里叶变换的一些基本概念: 1. 图像傅里叶变换 对于M行N列的图像矩阵f(x,y),f(x, y)表示第x行y列的像素值,则存在复数矩阵F,有以下公式 ...
在opencv2中,可能使用blur对图像进行平滑处理,这种方法就是最简单的求平均数。 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法。 平滑处理的用途有很多, 但是在很多地方我们仅仅关注它减少噪声的功用。 平滑处理时需要用到一个 滤波器 。 最常用的滤波器 ...
1、空间滤波基础概念 1、空间滤波基础 空间滤波一词中滤波取自数字信号处理,指接受或拒绝一定的频率成分,但是空间滤波学习内容实际上和通过傅里叶变换实现的频域的滤波是等效的,故而也称为滤波。空间滤波主要直接基于领域(空间域)对图像中的像素执行计算,用滤波器(也成为空间掩膜、核、模板和窗口)直接 ...