1.改变模型维度 二维的输入数据(如\(6*6\))和\(1*1\)的卷积核 卷积,相当于原输入数据直接做乘法 三维的输入数据(如\(6*6*32\))和\(1*1*32\)的卷积核卷积,相当于卷积核的32个数对原输入数据的32个数加权求和,结果填到最右侧对应方框中 升维 ...
.降维或升维,减少参数量 通过 卷积核的个数,来控制输出的通道数也就是维度 通过一次卷积操作,W H 将变为W H ,这样的话,使用 个 的卷积核,显然可以卷积出 个W H ,再做通道的串接操作,就实现了W H 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量 图示: goolenet为例: resnet为例: 同样也利用了 x 卷积,并且是在 x 卷积层的前后都使用了 ...
2019-06-11 20:46 0 614 推荐指数:
1.改变模型维度 二维的输入数据(如\(6*6\))和\(1*1\)的卷积核 卷积,相当于原输入数据直接做乘法 三维的输入数据(如\(6*6*32\))和\(1*1*32\)的卷积核卷积,相当于卷积核的32个数对原输入数据的32个数加权求和,结果填到最右侧对应方框中 升维 ...
权值共享基本上有两种方法: 在同一特征图和不同通道特征图都使用共享权值,这样的卷积参数是最少的,例如上一层为30*30*40,当使用3*3*120的卷积核进行卷积时,卷积参数为:3*3*120个.(卷积跟mlp有区别也有联系一个神经元是平面排列,一个是线性排列) 第二种只在同一特征图上 ...
1*1的卷积核在NIN、Googlenet中被广泛使用,但其到底有什么作用也是一直困扰的问题,这里总结和归纳下在网上查到的自认为很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升维和降维 3)减少卷积核参数(简化模型) 1 - 引入 在我学习吴恩达老师 ...
中用1*1*m的卷积核卷积n(如512)个特征图的每一个位置(像素点),其实对于每一个位置的1*1卷积 ...
发现很多网络使用1×1的卷积核,实际就是对输入的一个比例缩放,因为1×1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数。(对于单通道和单个卷积核而言这样理解是可以的) 对于多通道和多个卷积核的理解,1×1卷积核大概有两方面的作用:1.实现跨通道的交互和信息整合(具有 ...
CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这个,为什么呢? 发现很多网络使用了1X1卷积核,这能起到什么作用 ...
目录 举例 在Inception module上的应用 参考资料 可以减少计算量,可以增加非线性判别能力 举例 假设有1个高为30、宽为40,深度为200的三维张量与55个高为5、宽为5、深度为200的卷积核same卷积 ...
1 - 引入 在我学习吴恩达老师Deeplearning.ai深度学习课程的时候,老师在第四讲卷积神经网络第二周深度卷积网络:实例探究的2.5节网络中的网络以及1×1卷积对1×1卷积做了较为详细且通俗易懂的解释。现自己做一下记录。 2 - 1×1卷积理解 假设当前输入张量维度 ...