1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个 ...
注: 本文是作者的自我总结,主要作为个人总结记录, 欢迎大家批评,交流. https: zhouxiaowei .github.io blogs 大家可能都知道, 在tensorflow中, 如果想实现测试时的batchsize大小随意设置, 那么在训练时, 输入的placeholder的shape应该设置为 None, H, W, C . 具体代码如下所示: Placeholders for i ...
2019-06-05 06:46 0 1027 推荐指数:
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个 ...
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None ...
input:输入数据 filter:过滤器 strides:卷积滑动步长,实际上可以解释为过滤器的大小 padding:图像边填充方式 --------------------- ...
方法定义 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None) 参数: input: 输入的要做 ...
上进行滑窗并相乘求和。 tensorflow中的conv1d和conv2d的区别:conv1d是单通道 ...
Depthwise Separable Convolution 1.简介 Depthwise Separable Convolution 是谷歌公司于2017年的CVPR中在论文”Xception: deep learning with depthwise separable ...
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解。google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了。 方法定义tf.nn.conv2d (input ...