原文:数据特征提取

数据表达 : 有时,我们通过对数据集原来的特征进行转换,生成新的 特征 或者说成分,会比直接使用原始的特征效果要好,即数据表达 data representation 特征提取 : 如图像识别,数据表达显得十分重要,因为图像是有成千上万个像素组成的,每个像素又有不同的的RGB色彩值,所以我们要使用特征提取这种数据处理方法,特征提取是指使用计算机提取图像中属于特征性的信息的方法及过程。 .使用PCA ...

2019-05-29 13:59 0 1154 推荐指数:

查看详情

数据标注及特征提取

数据标注就是使用自动化工具通过分类、画框、注释等等对收集来的数据进行标记以形成可供计算机识别分析的优质数据的过程。   数据标注的对象主要分为文本、图片、音频、视频四个种类:   文本标注主要包括情感分析、知识库、关键词提取、文字翻译、搜索引擎优化等。就比如,识别一句话蕴含的情感 ...

Wed May 15 02:28:00 CST 2019 0 516
基于MFCC的语音数据特征提取概述

1. 概述   语音是人类之间沟通交流的最直接也是最快捷方便的一种手段,而实现人类与计算机之间畅通无阻的语音交流,一直是人类追求的一个梦想。   伴随着移动智能设备的普及,各家移动设备的厂家也开始 ...

Sat Sep 28 20:14:00 CST 2019 0 3181
文本之特征提取

法一:Bag-of-words 词袋模型 文本特征提取有两个非常重要的模型: 词集模型:单词构成的集合,集合中每个元素都只有一个,也即词集中的每个单词都只有一个 词袋模型:如果一个单词在文档中出现不止一次,并统计其出现的次数(频数) 两者本质上的区别,词袋是在词集的基础上 ...

Wed Dec 19 22:41:00 CST 2018 0 636
七、特征提取和转换

TF-IDF TF-IDF(Term frequency-inverse document frequency ) 是文本挖掘中一种广泛使用的特征向量化方法。TF-IDF反映了语料中单词对文档的重要程度。假设单词用t表示,文档用d表示,语料用D表示,那么文档频度DF(t, D)是包含 ...

Tue Jan 10 00:43:00 CST 2017 0 2573
5.特征提取

5.特征提取 有很多特征提取技术可以应用到文本数据上,但在深入学习之前,先思考特征的意义。为什么需要这些特征?它们又如何发挥作用?数据集中通常包含很多数据。一般情况下,数据集的行和列是数据集的不同特征或属性,每行或者每个观测值都是特殊的值。在机器学习术语中,特征是独一无二的,是数据集中每个观测值 ...

Thu Aug 15 02:37:00 CST 2019 0 515
(一)特征提取

特征提取 特征的种类在图像领域主要分为点,线,面。线特征和面特征对图像信息利用得更多,因而其分辨性更高。但遗憾的是,由于线特征和面特征提取的条件比较苛刻,因此在实际应用中并不广泛。(尽管在SLAM中也有点线结合的实例,在图像纹理较弱的情况下,线特征可以发挥更大的用处 ...

Thu Mar 12 20:33:00 CST 2020 0 632
特征提取特征变换)

特征提取特征变换) 从一组已有的特征通过一定的数学运算得到一组新特征 数据降维: PCA:方差 LDA(也叫Fisher 线性判别): 均值 类内离散度尽可能小,类间离散度尽可能大 两者都假设数据分布是高斯分布 Ref. 《模式识别(第三版)》张学工 ...

Tue Oct 08 03:04:00 CST 2019 0 387
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM