在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,下面贴出VGGNet结构示意图。 上面圈出来的是VGG16示意图,也可以用如下两个图表示。 如上图所示 ,VGG16 ...
选取微调形式的两个重要因素:新数据集的大小 size 和相似性 与预训练的数据集相比 。牢记卷积网络在提取特征时,前面的层所提取的更具一般性,后面的层更加具体,更倾向于原始的数据集 more original dataset specific 。四个基本原则: 新数据集小而且相似时,不建议进行微调,以防止过拟合。最好是只训练线性分类器 只训练后面一层 。 新数据集大而且相似时,因为有足够的数据,所 ...
2019-05-28 17:17 0 752 推荐指数:
在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,下面贴出VGGNet结构示意图。 上面圈出来的是VGG16示意图,也可以用如下两个图表示。 如上图所示 ,VGG16 ...
参考:迁移学习——Fine-tune 一、迁移学习 就是把已训练好的模型参数迁移到新的模型来帮助新模型训练。 模型的训练与预测: 深度学习的模型可以划分为 训练 和 预测 两个阶段。 训练 分为两种策略:一种是白手起家从头搭建模型进行训练,一种是通过预训练模型进行训练。 预测 ...
1. 前言 项目需要用目标检测模型,由于yolov3精度和性能突出,成为最后选择的模型。但是因为在实际场景中会有误检测和漏检测的情况,还需要采集实际场景的数据进行微调。思路是直接调整由ImageNet+coco数据集训练出来的权重yolov3.weights,冻结前面的层数,只微调后面n层。 系统 ...
深度学习中需要大量的数据和计算资源(乞丐版都需要12G显存的GPU - -)且需花费大量时间来训练模型,但在实际中难以满足这些需求,而使用迁移学习则能有效 降低数据量、计算量和计算时间,并能定制在新场景的业务需求,可谓一大利器。 迁移学习不是一种算法而是一种机器学习思想,应用到深度学习就是微调 ...
深度学习中需要大量的数据和计算资源(乞丐版都需要12G显存的GPU - -)且需花费大量时间来训练模型,但在实际中难以满足这些需求,而使用迁移学习则能有效 降低数据量、计算量和计算时间,并能定制在新场景的业务需求,可谓一大利器。 迁移学习不是一种算法而是一种机器学习思想,应用到深度学习就是微调 ...
github博客传送门 csdn博客传送门 什么是fine-tuning? 在实践中,由于数据集不够大,很少有人从头开始训练网络。常见的做法是使用预训练的网络(例如在ImageNet上训练的分类1000类的网络)来重新fine-tuning(也叫微调),或者当做特征提取器。 以下是常见的两类 ...
paper name:How to Fine-Tune BERT for Text Classification? 如何在文本分类任务上fine-tune Bert 1、介绍 作者介绍了一下各种可用于文本分类的方法,比如word2vec、GloVe、sentence ...
文章名《How to Fine-Tune BERT for Text Classification》,2019,复旦大学 如何在文本分类中微调BERT模型? 摘要:预训练语言模型已经被证明在学习通用语言表示方面有显著效果,作为一种最先进的预训练语言模型,BERT在多项理解任务中取得了惊人的成果 ...