原文:迁移学习-微调(fine-tune)的注意事项:

选取微调形式的两个重要因素:新数据集的大小 size 和相似性 与预训练的数据集相比 。牢记卷积网络在提取特征时,前面的层所提取的更具一般性,后面的层更加具体,更倾向于原始的数据集 more original dataset specific 。四个基本原则: 新数据集小而且相似时,不建议进行微调,以防止过拟合。最好是只训练线性分类器 只训练后面一层 。 新数据集大而且相似时,因为有足够的数据,所 ...

2019-05-28 17:17 0 752 推荐指数:

查看详情

微调(Fine-tune)原理

  在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,下面贴出VGGNet结构示意图。         上面圈出来的是VGG16示意图,也可以用如下两个图表示。           如上图所示 ,VGG16 ...

Sat Oct 26 07:00:00 CST 2019 0 4301
迁移学习fine-tune和局部参数恢复

参考:迁移学习——Fine-tune 一、迁移学习 就是把已训练好的模型参数迁移到新的模型来帮助新模型训练。 模型的训练与预测: 深度学习的模型可以划分为 训练 和 预测 两个阶段。 训练 分为两种策略:一种是白手起家从头搭建模型进行训练,一种是通过预训练模型进行训练。 预测 ...

Wed Aug 28 19:53:00 CST 2019 0 1043
yolov3模型微调(fine-tune)备忘

1. 前言 项目需要用目标检测模型,由于yolov3精度和性能突出,成为最后选择的模型。但是因为在实际场景中会有误检测和漏检测的情况,还需要采集实际场景的数据进行微调。思路是直接调整由ImageNet+coco数据集训练出来的权重yolov3.weights,冻结前面的层数,只微调后面n层。 系统 ...

Fri Mar 20 22:35:00 CST 2020 0 3276
深度学习 Fine-tune 技巧总结

深度学习中需要大量的数据和计算资源(乞丐版都需要12G显存的GPU - -)且需花费大量时间来训练模型,但在实际中难以满足这些需求,而使用迁移学习则能有效 降低数据量、计算量和计算时间,并能定制在新场景的业务需求,可谓一大利器。 迁移学习不是一种算法而是一种机器学习思想,应用到深度学习就是微调 ...

Sun Aug 26 17:09:00 CST 2018 0 713
深度学习 Fine-tune 技巧总结

深度学习中需要大量的数据和计算资源(乞丐版都需要12G显存的GPU - -)且需花费大量时间来训练模型,但在实际中难以满足这些需求,而使用迁移学习则能有效 降低数据量、计算量和计算时间,并能定制在新场景的业务需求,可谓一大利器。 迁移学习不是一种算法而是一种机器学习思想,应用到深度学习就是微调 ...

Fri Mar 30 22:54:00 CST 2018 3 9522
迁移学习的使用注意事项

github博客传送门 csdn博客传送门 什么是fine-tuning? 在实践中,由于数据集不够大,很少有人从头开始训练网络。常见的做法是使用预训练的网络(例如在ImageNet上训练的分类1000类的网络)来重新fine-tuning(也叫微调),或者当做特征提取器。 以下是常见的两类 ...

Thu Dec 27 03:19:00 CST 2018 0 749
paper name:How to Fine-Tune BERT for Text Classification?

paper name:How to Fine-Tune BERT for Text Classification? 如何在文本分类任务上fine-tune Bert 1、介绍 作者介绍了一下各种可用于文本分类的方法,比如word2vec、GloVe、sentence ...

Thu Nov 07 03:34:00 CST 2019 0 506
《How to Fine-Tune BERT for Text Classification》-阅读心得

文章名《How to Fine-Tune BERT for Text Classification》,2019,复旦大学 如何在文本分类中微调BERT模型? 摘要:预训练语言模型已经被证明在学习通用语言表示方面有显著效果,作为一种最先进的预训练语言模型,BERT在多项理解任务中取得了惊人的成果 ...

Sat Feb 08 21:47:00 CST 2020 0 1896
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM