转自: https://blog.csdn.net/qq_38177302/article/details/78449982 第一步 : 给出方程 ax + by = c 。 第二步 : 算出 辗转相除法 gcd(a, b) 。 第三步 : 运用 扩展欧几里德 ex_gcd(a, b ...
这是一个数学推导 首先我们已经知道了,如何通过扩展欧几里德算法,求出方程的其中一组解了 那么就可以继续往下看 给出两个方程 ax by gcd a,b ax by gcd a,b 所以可以推出 ax by ax by a x x b y y 然后我们知道gcd a,b 为a,b的最大公因数,所以我们将 A a gcd a,b ,B b gcd a,b ,接着往下推出 A x x B y y 现在A ...
2019-05-11 23:49 0 553 推荐指数:
转自: https://blog.csdn.net/qq_38177302/article/details/78449982 第一步 : 给出方程 ax + by = c 。 第二步 : 算出 辗转相除法 gcd(a, b) 。 第三步 : 运用 扩展欧几里德 ex_gcd(a, b ...
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。 第一种证明: a可以表示成a = kb + r,则r ...
一、欧几里得算法(重点是证明,对后续知识有用) 欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整 ...
转载自https://www.cnblogs.com/hadilo/p/5914302.html 一、欧几里得算法(重点是证明,对后续知识有用) 欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数 定义 gcd(a,b) 为整数 a 与 b 的最大 ...
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。 第一种证明: a可以表示成a = kb + r,则r ...
一、扩展欧几里德算法: 已知a, b求解一组x,y,使它们满足等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理)。 扩展欧几里德常用在求解模线性方程及方程组中。 证明: ax+by=gcd(a,b); 1. (1) a = 0,ax+by ...
为什么老是碰上 扩展欧几里德算法 ( •̀∀•́ )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k ...
; ii,b左a右,得出方程 bx2 - ay2 = d 。 2,利用扩展欧几里德算法,解出 ...