决策树学习基本算法 输入:训练集; 属性集. 过程:函数 1: 生成结点node; 2: if 中样本全属于同一类别 then 3: 将node标记为类叶结点; return 4: end if 5: if 中样本在上取值相同 then 6: 将node标记为叶 ...
我们假设某计算机学院有这么一个班级,班上有 人,全是男程序员。大一的时候大家全都是单身。他们的辅导员在班会上做了这么一个预测, 到了大二,班上的张三,李四,老王等 位同学会有女朋友 剩下的狗剩,二蛋,大头等 个同学,可能还要再等几年。 好的,这个时候我们可以把这位辅导员的预测写成下面这张表: 到了大二,大家把这张表拿出来一核对,在被预计有女朋友的人里,发现除了老王,其他人还真的有了女朋友 在预计没 ...
2019-05-10 19:05 0 497 推荐指数:
决策树学习基本算法 输入:训练集; 属性集. 过程:函数 1: 生成结点node; 2: if 中样本全属于同一类别 then 3: 将node标记为类叶结点; return 4: end if 5: if 中样本在上取值相同 then 6: 将node标记为叶 ...
又叫判定树,是一种基本的分类与回归方法。 优点:可读性强,分类速度快,容易转换成if-then分类规则 通常分为3个步骤:特征(属性)选择、决策树的生成、决策树的修剪。 特征选择即选择分裂属性,又叫属性选择度量,把数据划分成较小的分区。 决策树的生成又叫决策树学习或者决策树 ...
回归树也是一种决策树,不过它处理的数据标签不是属于分类的,也就是说它的标签是一个连续随机的值,比如说对一个城市的房价的预测,每个月的房价都是随机波动的值,不像分类任务,要将所有数据根据标签进行分类。 重要参数、属性、接口 criterion:回归树衡量分枝质量的指标,支持的标准有三种 ...
一、信息论基础 树具有天然的分支结构。对于分类问题而言,决策树的思想是用节点代表样本集合,通过某些判定条件来对节点内的样本进行分配,将它们划分到该节点下的子节点,并且要求各个子节点中类别的纯度之和应高于该节点中的类别纯度,从而起到分类效果。 节点纯度反映的是节点样本标签的不确定性。当一个节点 ...
决策树是一个函数,以属性值向量作为输入,返回一个“决策”。 如上图,我们输入一系列属性值(天气状况,湿度,有无风)后会得到一个要不要出去玩的一个决策。 从样例构建决策树 对于原始样例集,我们选取一个最好的属性将其分裂,这样我们会产生多个样例子集,同时我们会把该属性从属性集去掉,并且继续 ...
一.简介 决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。 二.决策树的表示法 决策树通过把实例从艮节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后继分支对应于该属性 ...
什么是决策树? 决策树是一种基本的分类与回归方法。其主要有点事模型具有可得性,分类速度快。学习时,利用训练数据,根据损失函数最小化原则建立决策树模型;预测时,对新数据,利用决策树模型进行分类。 决策树学习通常包含以下三个步骤: 选择特征 决策树生成 剪枝 ...
本文目的 最近一段时间在Coursera上学习Data Analysis,里面有个assignment涉及到了决策树,所以参考了一些决策树方面的资料,现在将学习过程的笔记整理记录于此,作为备忘。 算法原理 决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据 ...