Policy Gradient Algorithms 2019-10-02 17:37:47 This blog is from: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms ...
为什么需要引入决定性策略梯度 决定性策略梯度算法对于策略函数的更新形式比较简单,就是action value函数的期望,这种简单的形式能够在估计policy时变得更有效。 作为随机策略,在相同的策略,在同一个状态处,采用的动作是基于一个概率分布的,即是不确定的。而确定性策略则决定简单点,虽然在同一个状态处,采用的动作概率不同,但是最大概率只有一个,如果我们只取最大概率的动作,去掉这个概率分布,那么 ...
2019-04-24 23:40 0 1166 推荐指数:
Policy Gradient Algorithms 2019-10-02 17:37:47 This blog is from: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms ...
本篇论文讨论了策略梯度方法的函数逼近问题。首先明确策略梯度的目标函数:最大化策略$\pi$下的累计回报$\rho(\pi)$ \[\rho ( \pi ) = E \left\{ \sum _ { ...
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv: Learning, (2017) Abstract 我们提出了一系列用于RL的策略梯度方法,该方法在通过 ...
SeqGAN: Sequence generative adversarial nets with policy gradient AAAI-2017 Paper: https://arxiv.org/abs/1609.05473 Offical Tensorflow Code ...
前面都是value based的方法,现在看一种直接预测动作的方法 Policy Based Policy Gradient 一个介绍 karpathy的博客 一个推导 下面的例子实现的REINFORCE算法 实例代码 ...
上一篇博文的内容整理了我们如何去近似价值函数或者是动作价值函数的方法: \[V_{\theta}(s)\approx V^{\pi}(s) \\ Q_{\theta}(s)\approx Q^ ...
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015 ...