在讲解误差反向传播算法之前,我们来回顾一下信号在神经网络中的流动过程。请细细体会,当输入向量\(X\)输入感知器时,第一次初始化权重向量\(W\)是随机组成的,也可以理解成我们任意设置了初始值,并和输入做点积运算,然后模型通过权重更新公式来计算新的权重值,更新后的权重值又接着和输入相互作用 ...
这篇文章主要整理三部分内容,一是常见的三种神经网络结构:前馈神经网络 反馈神经网络和图网络 二是整理前馈神经网络中正向传播 误差反向传播和梯度下降的原理 三是梯度消失和梯度爆炸问题的原因及解决思路。 一 神经网络结构 目前比较常用的神经网络结构有如下三种: 前馈神经网络 前馈神经网络中,把每个神经元按接收信息的先后分为不同的组,每一组可以看做是一个神经层。每一层中的神经元接收前一层神经元的输出,并 ...
2019-04-12 22:39 0 4506 推荐指数:
在讲解误差反向传播算法之前,我们来回顾一下信号在神经网络中的流动过程。请细细体会,当输入向量\(X\)输入感知器时,第一次初始化权重向量\(W\)是随机组成的,也可以理解成我们任意设置了初始值,并和输入做点积运算,然后模型通过权重更新公式来计算新的权重值,更新后的权重值又接着和输入相互作用 ...
简述 深度前馈网络(deep feedforward network), 又叫前馈神经网络(feedforward neural network)和多层感知机(multilayer perceptron, MLP) . 深度前馈网络之所以被称为网络(network),因为它们通常由许多 ...
神经网络 神经网络可以理解为一个输入x到输出y的映射函数,即f(x)=y,其中这个映射f就是我们所要训练的网络参数w,我们只要训练出来了参数w,那么对于任何输入x,我们就能得到一个与之对应的输出y。只要f不同,那么同一个x就会产生不同的y,我们当然是想要获得最符合真实数据的y,那么我们就要训练 ...
这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下。突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力。[1 ...
目录 1 神经网络 1.1 神经元 1.2 前馈网络 1.3 梯度下降 1.4 误差反向传播 1.5 BP示例 2 多样本 1 神经网络 大量结构简单的、功能接近的神经元节点按一定体系架构连接成的模拟 ...
深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础。 回顾监督学习的一般性问题。假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, (x_m, y_m)\}$,其中$x$为输入向量,$y$为输出向量,利用这个训练样本 ...
构造:输入神经元个数等于输入向量维度,输出神经元个数等于输出向量维度。(x1=(1,2,3),则需要三个输入神经元 一 前向后传播 隐层: 输出层: 一般化 ,向量 ...
详解神经网络的前向传播和反向传播本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解的人 ...