机器学习的模型泛化 1、机器学习的模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。 2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性 ...
今天给大家带来一篇如何评价模型的好坏以及模型的得分 最下面的代码最有用 一 错误率与精度 accuracy准确 错误率和精度是分类任务中最常用的两种性能度量,既适用于二分类任务,也适用于多分类任务。错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占样本总数的比例。 from sklearn import metrics print 模型精度: ,metrics.accuracy ...
2019-04-11 20:42 3 1712 推荐指数:
机器学习的模型泛化 1、机器学习的模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。 2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性 ...
(原作:MSRA刘铁岩著《分布式机器学习:算法、理论与实践》。这一部分叙述很清晰,适合用于系统整理NN知识) 线性模型 线性模型是最简单的,也是最基本的机器学习模型。其数学形式如下:g(X;W)=WTX。有时,我们还会在WTX的基础上额外加入一个偏置项b,不过只要把X扩展出一维常数 ...
参考博客:https://blog.csdn.net/qq_31342997/article/details/88078213 https://blog.csdn.net/u0129694 ...
二、机器学习模型评估 2.1 模型评估:基本概念 错误率(Error Rate) 预测错误的样本数a占样本总数的比例m \[E=\frac{a}{m} \] 准确率(Accuracy) 准确率=1-错误率准确率=1−错误率 误差 ...
'没有测量,就没有科学'这是科学家门捷列夫的名言。在计算机科学特别是机器学习领域中,对模型的评估同样至关重要,只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型评估主要分为离线评估和在线评估两个阶段。针对分类、排序、回归、序列预测等不同类 ...
朴素贝叶斯(分类) 目录 朴素贝叶斯(分类) 决策树(分类) 算法核心 信息熵 信息量化 熵 信息 ...
概念储备: (The least square method)和(least square error) 狭义的最小二乘方法,是线性假设下的一种有闭式解的参数 ...
摘要: 两篇文档是否相关往往不只决定于字面上的词语重复,还取决于文字背后的语义关联。对语义关联的挖掘,可以让我们的搜索更加智能化。本文着重介绍了一个语义挖掘的利器:主题模型。主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量 ...