k=5 结 ...
图像分割就是利用图像自身的信息,比如颜色 纹理 形状等特征进行划分,将图像分割成不同的区域,划分出来的每个区域就相当于是对图像中的像素进行了聚类。单个区域内的像素之间的相似度大,不同区域间的像素差异性大。这个特性正好符合聚类的特性,所以你可以把图像分割看成是将图像中的信息进行聚类。当然聚类只是分割图像的一种方式,除了聚类,我们还可以基于图像颜色的阈值进行分割,或者基于图像边缘的信息进行分割等。 将 ...
2019-04-09 11:02 0 996 推荐指数:
k=5 结 ...
K-means算法用于聚类分析,广泛用于机器学习领域。 下面借用百度百科的解释,个人觉得讲的还算清楚: k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度 ...
使用的环境,python3.5,opencv2 函数的格式为: 灰度图片分割 结果: 彩色图片分割 结果: ...
K-Means算法: 我们常说的K-Means算法属于无监督分类(训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质和规律,为进一步的数据分析提供基础),它通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于 ...
文章首发:xmoon.info 图像分割是将图片将相似的部分分割成相同的块 Gestalt理论 解释物体分割的底层原理 将同一个东西群组在一起,集合中的元素可以具有由关系产生的属性 Gestalt中常见的一些分组的情况 现实生活中的分组现象 将这种思想转化为算法 ...
在监督学习中,有标签信息协助机器学习同类样本之间存在的共性,在预测时只需判定给定样本与哪个类别的训练样本最相似即可。在非监督学习中,不再有标签信息的指导,遇到一维或二维数据的划分问题,人用肉眼就很容易 ...
1.什么是K-Means? K均值算法聚类 关键词:K个种子,均值聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中 K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法 ...
) K-Means ++ 算法 k-means++算法选择初始seeds的基本思想就是:初始的聚类中 ...