分类决策树的概念和算法比较好理解,并且这方面的资料也很多。但是对于回归决策树的资料却比较少,西瓜书上也只是提了一下,并没有做深入的介绍,不知道是不是因为回归树用的比较少。实际上网上常见的房价预测的案例就是一个应用回归树的很好的案例,所以我觉得至少有必要把回归树的概念以及算法弄清楚 ...
决策树常用于分类问题,但是也能解决回归问题。 在回归问题中,决策树只能使用cart决策树,而cart决策树,既可以分类,也可以回归。 所以我们说的回归树就是指cart树。 为什么只能是cart树 . 回想下id ,分裂后需要计算每个类别占总样本的比例,回归哪来的类别,c . 也一样 . 回归问题肯定是连续属性,所以只能二划分,而cart树是强制的二叉树 回归树的分裂 分裂方法与决策树处理连续属性无 ...
2019-04-07 18:45 0 1161 推荐指数:
分类决策树的概念和算法比较好理解,并且这方面的资料也很多。但是对于回归决策树的资料却比较少,西瓜书上也只是提了一下,并没有做深入的介绍,不知道是不是因为回归树用的比较少。实际上网上常见的房价预测的案例就是一个应用回归树的很好的案例,所以我觉得至少有必要把回归树的概念以及算法弄清楚 ...
解决问题 实现基于特征范围的树状遍历的回归。 解决方案 通过寻找样本中最佳的特征以及特征值作为最佳分割点,构建一棵二叉树。选择最佳特征以及特征值的原理就是通过满足函数最小。其实选择的过程本质是对于训练样本的区间的分割,基于区间计算均值,最终区域的样本均值即为预测值 ...
回归 决策树也可以用于执行回归任务。我们首先用sk-learn的DecisionTreeRegressor类构造一颗回归决策树,并在一个带噪声的二次方数据集上进行训练,指定max_depth=2: 下图是这棵树的结果: 这棵树看起来与之前构造的分类树类似。主要 ...
(6,6)决定它对应的输出。第一维分量6介于5和8之间,第二维分量6小于8,根据此决策树很容易判断(6, ...
是运用于分类以及回归的一种树结构。决策树由节点和有向边组成,一般一棵决策树包含一个根节点、若干内部节点和若干 ...
DecisionTreeRegressor---回归树 一.重要参数 criterion: 1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为 特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失 ...
回归树也是一种决策树,不过它处理的数据标签不是属于分类的,也就是说它的标签是一个连续随机的值,比如说对一个城市的房价的预测,每个月的房价都是随机波动的值,不像分类任务,要将所有数据根据标签进行分类。 重要参数、属性、接口 criterion:回归树衡量分枝质量的指标,支持的标准有三种 ...
SparkMLlib回归算法之决策树 (一),决策树概念 1,决策树算法(ID3,C4.5 ,CART)之间的比较: 1,ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息 ...