原文:PCA降维—降维后样本维度大小

之前对PCA的原理挺熟悉,但一直没有真正使用过。最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题。 MATLAB自带PCA函数: coeff, score, latent, tsquared pca X 其中,X是n p的,n是样本个数,p是特征维数。 coeff矩阵是返回的转换矩阵,就是把原始样本转换到新空间中的转换矩阵。 score是原始样本 ...

2019-04-01 11:34 0 1551 推荐指数:

查看详情

PCA降维

概念 在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”。另外在高维特征中容易出现特征之间的线性相关,这也就意味着有的特征是冗余存在的。基于这些问题,降维思想就出现了。 降维方法 ...

Wed Aug 07 05:15:00 CST 2019 0 1092
PCA降维

转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA简介 1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解 ...

Mon Apr 02 05:42:00 CST 2018 0 7289
PCA降维处理

数据集中含有太多特征时,需要简化数据。降维不是删除部分特征,而是将高维数据集映射到低维数据集,映射的数据集更简洁,方便找出对结果贡献最大的部分特征。 简化数据的原因: 1、使得数据集更易使用 2、降低很多算法的计算开销 3、去除噪声 4、使得结果易懂 PCA:principal ...

Thu Nov 22 01:09:00 CST 2018 0 749
初识PCA数据降维

  PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵。 一.预备知识   1.1 协方差分析   对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个 ...

Sat Jun 27 19:47:00 CST 2015 0 8451
MATLAB实例:PCA降维

MATLAB实例:PCA降维 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. iris数据 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 ...

Fri Sep 27 05:12:00 CST 2019 0 3670
PCA和LDA降维的比较

PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维。下面的代码分别实现了两种降维方式: 结果如下 ...

Sat Jun 25 22:24:00 CST 2016 0 3207
PCA数据降维

Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的好处: 使得数据集更易使用 降低 ...

Thu Dec 11 07:25:00 CST 2014 3 2077
降维PCA

简介 要理解什么是降维,书上给出了一个很好但是有点抽象的例子。 说,看电视的时候屏幕上有成百上千万的像素点,那么其实每个画面都是一个上千万维度的数据;但是我们在观看的时候大脑自动把电视里面的场景放在我们所能理解的三维空间来理解,这个很自然的过程其实就是一个 降维 ...

Thu May 26 20:01:00 CST 2016 0 13496
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM