拉普拉斯变换 由于古典意义下的傅里叶变换存在的条件是\(f(t)\)除了满足狄拉克雷条件以外,还要在\((-\infty,\infty)\)上绝对可积,许多函数都不满足这个条件。在很多实际问题中,存在许多以时间 \(t\) 为自变量的函数,这些函数根本不需要考虑\(t<0\)的情况 ...
可以证明,最简单的各向同性微分算子是拉普拉斯算子。一个二维图像函数 f x,y 的拉普拉斯算子定义为 其中,在 x 方向可近似为 同理,在 y 方向上可近似为 于是 我们得到满足以上三个公式的两个变量的离散拉普拉斯算子是 拉普拉斯变换所对应的滤波器模板为: 使用matlab利用拉普拉斯算子试着提取一下图像的边缘 使用拉普拉斯算子实现图像的边缘提取 close all clear all clc I ...
2019-03-25 19:06 0 1815 推荐指数:
拉普拉斯变换 由于古典意义下的傅里叶变换存在的条件是\(f(t)\)除了满足狄拉克雷条件以外,还要在\((-\infty,\infty)\)上绝对可积,许多函数都不满足这个条件。在很多实际问题中,存在许多以时间 \(t\) 为自变量的函数,这些函数根本不需要考虑\(t<0\)的情况 ...
拉普拉斯变换的引入 首先能做的,是对周期函数做傅里叶级数展开,使用复数表达为: 至于为什么能展开成傅里叶级数,工数(高数)并没有说清楚,只给出了一个没有证明的迪利克雷条件,说只要满足该条件就一定能展开。 \[f(t) =\sum\limits_ ...
该系列为DR_CAN动态系统的建模与分析系列视频笔记,详见https://space.bilibili.com/230105574 由于笔者水平有限,文中难免存在一些不足和错误之处,诚请各位批评指正。 1 定义 拉普拉斯变换(英语:Laplace transform)是应用数学中常用的一种积分 ...
https://blog.csdn.net/fengbingchun/article/details/79321200 ...
...
拉普拉斯变换与Z变换 从傅里叶变换到拉普拉斯变换 Fourier 变换: \[\begin{align*} x(t)&\stackrel{F}{\longrightarrow}X(j\omega)\\ X(j\omega)&\stackrel{F ...
【注意】 初值定理要求: \(f(t)\) 连续可导; 不包含任何阶次的冲激函数; \(F(s)\) 是真有理分式 终值定理要求: \(x(t)\) 的终值存在,即 \(X(s)\) 的极点在左半 \(s\) 平面 点击查看 常见的拉普拉斯变换对 - 对查表 ...
首先 这里的拉普拉斯变换我们这么写: (这里用的是单边拉普拉斯变换 因为一般遇到的都是因果系统 所以 t一般都是大于0) 1.常用函数的拉普拉斯变换:阶跃函数 指数函数 t的n次方: 冲激函数: 汇总成表: 2.性质总结 ...