BP神经网络——交叉作代价函数

Sigmoid函数 当神经元的输出接近 1时,曲线变得相当平,即σ′(z)的值会很小,进而也就使∂C/∂w和∂C/∂b会非常小。造成学习缓慢,下面有一个二次代价函数的cost变化图,epoch从15到50变化很小。 引入交叉代价函数 针对上述问题,希望对输出层选择一个不包含 ...

Mon Nov 28 05:56:00 CST 2016 0 3879
Pytorch-均方差损失函数和交叉损失函数

方差损失函数mse_loss()与交叉损失函数cross_entropy() 1.均方差损失函数mse_loss() 均方差损失函数是预测数据和原始数据对应点误差的平方和的均值。 \[MSE=\frac{1}{N}( y^`−y)^2 \] N为样本个数,y ...

Sun Oct 11 01:19:00 CST 2020 0 824
神经网络——损失函数

符号: \[\left\{ {\left( {{x^{\left( 1 \right)}},{y^{\left( 1 \right)}}} \right),\left( {{x^{\left( 2 ...

Tue Oct 30 03:25:00 CST 2018 0 724
交叉损失函数

交叉损失函数 的本质是香浓信息量\(\log(\frac{1}{p})\)的期望 既然的本质是香浓信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...

Fri Apr 28 23:39:00 CST 2017 1 6494
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM