在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna。 本篇主要参考了UCL强化学习 ...
在前面我们讨论了基于价值的强化学习 Value Based RL 和基于策略的强化学习模型 Policy Based RL ,本篇我们讨论最后一种强化学习流派,基于模型的强化学习 Model Based RL ,以及基于模型的强化学习算法框架Dyna。 基于价值的强化学习模型和基于策略的强化学习模型都不是基于模型的,它们从价值函数,策略函数中直接去学习。 而基于模型的强化学习则会尝试从环境的模型去 ...
2019-03-12 11:15 0 603 推荐指数:
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna。 本篇主要参考了UCL强化学习 ...
本文介绍强化学习的基本概念及建模方法 什么是强化学习 强化学习主要解决贯续决策问题,强调一个智能体在不断的跟环境交互的过程中通过优化策略从而在整个交互过程中获得最多的回报。 图中的大脑代表智能体agent,智能体根据当前环境\(s_t\) 选择一个动作\(a_t\)执行,这个\(a_t ...
从今天开始整理强化学习领域的知识,主要参考的资料是Sutton的强化学习书和UCL强化学习的课程。这个系列大概准备写10到20篇,希望写完后自己的强化学习碎片化知识可以得到融会贯通,也希望可以帮到更多的人,毕竟目前系统的讲解强化学习的中文资料不太多。 第一篇会从强化学习的基本概念 ...
强化学习传说:第五章 基于模型的强化学习 无模型的方法是通过agent不断探索环境,不断试错,不断学习,因此导致了无模型的方法数据效率不高。而基于模型的方法则相反,它能够充分利用已有的模型,高效地利用数据。 简单的思路: 先训练得到环境模型,再利用规划求解。但是本来专家算法就是这么做 ...
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted ...
【导语】:在深度强化学习第四篇中,讲了Policy Gradient的理论。通过最终推导得到的公式,本文用PyTorch简单实现以下,并且尽可能搞清楚torch.distribution的使用方法。代码参考了LeeDeepRl-Notes中的实现。 1. 复习 \[\theta ...
机器学习分类: 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益 强化学习基础概念:Agent :主体,与环境交互的对象,动作的行使者Environment : 环境, 通常被规范为马尔科夫决策过程(MDP)State : 环境状态的集合Action ...
源代码:https://github.com/higgsfield/RL-Adventure 在Pytorch1.4.0上解决bug后的复现版本:https://github.com/lucifer ...