原文:【学习笔记】机器学习之特征工程

目录 特征工程 数据的特征抽取 字典特征抽取 文本特征抽取 数据的特征预处理 归一化 标准化 缺失值处理 特征选择 降纬 特征工程 从数据中抽取出来的对预测结果有用的信息,通过专业的技巧进行数据处理,是的特征能在机器学习算法中发挥更好的作用。优质的特征往往描述了数据的固有结构。 最初的原始特征数据集可能太大,或者信息冗余,因此在机器学习的应用中,一个初始步骤就是选择特征的子集,或构建一套新的特征 ...

2019-03-13 20:23 0 634 推荐指数:

查看详情

机器学习特征工程

一、特征工程概述 “数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器学习模型逼近这个上限。特征工程能使得模型的性能得到提升,有时甚至在 ...

Thu May 12 18:17:00 CST 2016 0 43009
机器学习——特征工程

机器学习是从数据中自动分析获取规律(模型),并利用规律对未知数据进行预测。 数据集的构成:特征值+目标值(根据目的收集特征数据,根据特征去判断、预测)。(注意:机器学习不需要去除重复样本数据) 常用的数据集网址: Kaggle网址:https://www.kaggle.com ...

Sat Oct 23 19:38:00 CST 2021 0 105
机器学习(一)特征工程基本流程

前言   特征是数据中抽取出来的对结果预测有用的信息,可以是文本或者数据。特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。过程包含了特征提取、特征构建、特征选择等模块。   特征工程的目的是筛选出更好的特征,获取更好的训练数据。因为好的特征具有更强 ...

Mon Mar 26 00:06:00 CST 2018 2 19700
机器学习:数据准备和特征工程

对于数据挖掘,数据准备阶段主要就是进行特征工程。 数据和特征决定了模型预测的上限,而算法只是逼近了这个上限。 好的特征要少而精,这会使模型更简单、更精准。 一、特征构造 1.’常见提取方式 文本数据的特征提取 词袋向量的方式:统计频率 ...

Fri Oct 04 08:13:00 CST 2019 0 673
机器学习 | 特征工程(二)- 特征选择

当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:  · 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。  · 特征与目标 ...

Tue Sep 11 22:08:00 CST 2018 0 2836
Python机器学习笔记:使用sklearn做特征工程和数据挖掘

  特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法 ...

Sun Feb 17 00:27:00 CST 2019 0 4081
机器学习-特征工程-Feature generation 和 Feature selection

概述:上节咱们说了特征工程机器学习的一个核心内容。然后咱们已经学习特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些方法技巧。但是光会前面的一些内容,还不足以应付实际的工作中的很多情况,例如如果咱们的原始数据 ...

Sun Jan 19 20:09:00 CST 2020 1 1302
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM