1. 创建vocabulary 学习词向量的概念 用Skip-thought模型训练词向量 学习使用PyTorch dataset 和 dataloader 学习定义PyTorch模型 学习torch.nn中常见的Module ...
什么是PyTorch PyTorch是Facebook人工智能团队开发的一个机器学习和深度学习工具,用于处理大规模图像分析,包括物体检测,分割与分类。但是它的功能不仅限于此。它与其它深度学习框架结合,能够完成复杂的算法。PyTorch用Python和C 编写。 PyTorch属于深度学习框架中的重要一员,与TensorFlow, Keras, Theano等其它深度学习框架不同,它是动态计算图模式 ...
2019-02-28 15:04 0 3151 推荐指数:
1. 创建vocabulary 学习词向量的概念 用Skip-thought模型训练词向量 学习使用PyTorch dataset 和 dataloader 学习定义PyTorch模型 学习torch.nn中常见的Module ...
pytorch中的词向量的使用 在pytorch我们使用nn.embedding进行词嵌入的工作。 具体用法就是: 在torch.nn.Embedding的源代码中,它是这么解释, This module is often used to store word embeddings ...
一、介绍 内容 将接触现代 NLP 技术的基础:词向量技术。 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示。 第二个将接触到现代词向量技术常用的模型 Word2Vec。在实验中将以小说《三体》为例,展示了小语料 ...
在文本分类和文本相似度匹配中,经常用预训练语言模型BERT来得到句子的表示向量,下面给出了pytorch环境下的操作的方法: 这里使用huggingface的transformers中BERT, 需要先安装该依赖包(pip install transformers) 具体实现 ...
不涉及具体代码,只是记录一下自己的疑惑。 我们知道对于在pytorch中,我们通过构建一个词向量矩阵对象。这个时候对象矩阵是随机初始化的,然后我们的输入是单词的数值表达,也就是一些索引。那么我们会根据索引,赋予每个单词独一无二的一个词向量表达。在其后的神经网络训练过程中,每个单词对应独一无二 ...
这节的内容是建立在之前我们对R语言最基本向量赋值的基础之上的,笔者本人学完R当中向量的索引感觉异常舒适,因为这个比Python的索引爽多了,是什么值开始索引就从哪里开始索引,到哪里结束就在哪里结束,而不会像Python一样有的时候输入0实际上是从1开始计数,有的时候到99为止实际上你要索引到100 ...
一、简介 支持向量机,一种监督学习方法,因其英文名为support vector machine,故一般简称SVM。 通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。 支持向量机建构一个或多个高 ...
向量之间的加减乘除运算: 这些代码看起来完全没有任何问题,就像之前我们已经接触过的其他语言的编程一样,但是后面就有一些R语言自带的特性了,比如说有两个不同长度的向量在进行加减乘除的时候,运算的规律是小的向量不断循环地去乘上大的向量,并且大的向量的长度必须是短的向量的整数倍,不然程序 ...