前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of linear algebra) 微积分的本质(Essence of calculus ...
视频资料:https: www.bilibili.com video av 一 向量是什么 物理专业:向量是空间中的箭头,由长度和方向决定 计算机专业:向量是有序的数字列表 数学家:向量可以是任何东西,只要保证向量相加 数字与向量的相乘有意义即可 当在坐标系下以有序多元数组的形式表示向量时,不同位置上的数字代表在相应坐标轴上的投影长度 当把向量视作一种运动时,向量加法可以视为依次进行各个运动,即向 ...
2019-03-10 21:08 0 2145 推荐指数:
前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of linear algebra) 微积分的本质(Essence of calculus ...
向量是线性代数最基础、最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理、数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是而非。 1. 物理学中的向量 物理学中的向量:空间中的箭头,由长度和它所指的方向决定 ...
首先,恭喜你读到了咪博士的这篇文章。本文可以说是该系列最重要、最核心的文章。你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么。读完咪博士的这篇文章,你一定会有一种醍醐灌顶、豁然开朗的感觉! 咱们先来说说啥叫变换。本质上,变换就是函数。 例如,你输入一个向量[ 5 7 ] [57 ...
1. 线性组合 接下来我们要换一个角度来看向量。以二维平面直角坐标系为例,i, j 分别是沿 2 个坐标轴方向的单位向量。那么坐标平面上的其他向量,例如 [ 3 -2 ] [3−与 i, j 是什么关系呢? 将向量 i 沿水平向右的方向拉升 3 倍,向量 j 沿竖直向下的方向拉升 2 倍 ...
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍。 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入门了。 不多,一共10次课。 链接:https://ocw.mit.edu/courses ...
目录 序言 向量究竟是什么? 线性组合、张成的空间与基 矩阵与线性变换的关系 行列式 逆矩阵、列空间、零空间 点积与对偶性 叉积 基变换 特征向量与特征值 抽象向量空间 通过直观的动画演示,理解线性代数的大部分核心概念 ...
本文主要内容为《线性代数的本质》学习笔记,内容和图片主要参考 学习视频 ,感谢3Blue1Brown对于本视频翻译的辛苦付出。有的时候跟不上字幕,所有在这里有些内容参考了此篇博客。在这里我主要记录下自己觉得重要的内容以及一些相关的想法,希望能与大家多多交流~ 本节内容对应视频的“00. 序言 ...
原文链接:https://www.cnblogs.com/TenosDoIt/p/3214096.html 从大学开始接触矩阵论和线性代数,记了很多公式,但是总感觉徘徊在线性代数的门外没有进去,感觉并没有接触到它的核心概念,不巧看到了这篇博客,顿时醍醐灌顶,豁然开朗,记录与此: 比如说 ...