介绍:创建一个模拟数据集,构建一个包含 5 棵决策树的随机森林分类模型,可视化每棵树和集成分类器的决策边界,比较研究。 从图中看,每一棵单独的决策树都有不同程度的过拟合和错误,而随机森林模型的过拟合程度较小,给出的决策边界也较为平滑。 ...
一 LR LR,DT,SVM都有自身的特性,首先来看一下LR,工业界最受青睐的机器学习算法,训练 预测的高效性能以及算法容易实现使其能轻松适应工业界的需求。LR还有个非常方便实用的额外功能就是它并不会给出离散的分类结果,而是给出该样本属于各个类别的概率 多分类的LR就是softmax ,可以尝试不同的截断方式来在评测指标上进行同一模型的性能评估,从而得到最好的截断分数。LR不管是实现还是训练或者预 ...
2019-02-26 19:35 0 1697 推荐指数:
介绍:创建一个模拟数据集,构建一个包含 5 棵决策树的随机森林分类模型,可视化每棵树和集成分类器的决策边界,比较研究。 从图中看,每一棵单独的决策树都有不同程度的过拟合和错误,而随机森林模型的过拟合程度较小,给出的决策边界也较为平滑。 ...
[toc] ## 第二次作业 #### 第一题 <b>题目描述</b><br> 1.如下表数据,前四列是天气情况(阴晴ou ...
决策树 与SVM类似,决策树在机器学习算法中是一个功能非常全面的算法,它可以执行分类与回归任务,甚至是多输出任务。决策树的算法非常强大,即使是一些复杂的问题,也可以良好地拟合复杂数据集。决策树同时也是随机森林的基础组件,随机森林在当前是最强大的机器学习算法之一。 在这章我们会先讨论如何使用 ...
回归 决策树也可以用于执行回归任务。我们首先用sk-learn的DecisionTreeRegressor类构造一颗回归决策树,并在一个带噪声的二次方数据集上进行训练,指定max_depth=2: 下图是这棵树的结果: 这棵树看起来与之前构造的分类树类似。主要 ...
目录 1. 载入数据 列解释Columns: 2. 数据分析 2.1 预处理 2.2 可视化 3. 训练模型 ...
在现实生活中,我们会遇到各种选择,不论是选择男女朋友,还是挑选水果,都是基于以往的经验来做判断。如果把判断背后的逻辑整理成一个结构图,你会发现它实际上是一个树状图,这就是我们今天要讲的决策树。 决策树的工作原理 决策树基本上就是把我们以前的经验总结出来。如果我们要出门打篮球,一般会根据“天气 ...
分类决策树的概念和算法比较好理解,并且这方面的资料也很多。但是对于回归决策树的资料却比较少,西瓜书上也只是提了一下,并没有做深入的介绍,不知道是不是因为回归树用的比较少。实际上网上常见的房价预测的案例就是一个应用回归树的很好的案例,所以我觉得至少有必要把回归树的概念以及算法弄清楚 ...
决策树的目标是从一组样本数据中,根据不同的特征和属性,建立一棵树形的分类结构。 决策树的学习本质上是从训练集中归纳出一组分类规则,得到与数据集矛盾较小的决策树,同时具有很好的泛化能力。决策树学习的损失函数通常是正则化的极大似然函数,通常采用启发式方法,近似求解这一最优化问题。 算法原理 ...