分享来自 :https://blog.csdn.net/starter_____/article/details/79327997 ...
pd.qcut, pd.cut, df.groupby 等在分组和聚合方面的应用 量化交易里, 需要进行大量的分组和统计, 以方便自己处优势的位置 机会. 比如对股价进行趋势分析, 波动性分析, 量化之后, 进行归类统计, 再进行胜算概率的统计. 依据D 和T 的区间, 能够组合出来 种情形, 每一种case都是人们搭建起来的一幅美丽的场景. 研究和观察每一幅场景出现以后, 随后的几天里的表现, ...
2019-02-25 22:35 0 1121 推荐指数:
分享来自 :https://blog.csdn.net/starter_____/article/details/79327997 ...
pd.cut() 是把一组数据按照一定bins分割成离散的区间,得到的数据是每个值的落到的区间,此函数对于从连续变量转换为离散变量也很有用 参数解释: 返回值: 分割后每个值落在的区间 运用各种参数 qcut ...
data = pd.Series([0,8,1,5,3,7,2,6,10,4,9]) # 实例1:把这组数据分成两部分,一半大的,一半小的,如是小的数值变成'小',大的数值变成'大': v=pd.qcut(data,[0,0.5,1],labels=['大','小 ...
和 qcut 都可以实现分箱操作,区别在于: cut:按照数值进行分割,等间隔 qcut:按照数据分 ...
GroupBy技术是对于数据进行分组计算并将各组计算结果合并的一项技术,包括以下3个过程: 拆分(Spliting):即将数据进行分组 应用(Applying):对每组应用函数进行计算 合并(Combining):将计算结果进行数据聚合 使用GroupBy ...
pandas-08 pd.cut()的功能和作用 pd.cut()的作用,有点类似给成绩设定优良中差,比如:0-59分为差,60-70分为中,71-80分为优秀等等,在pandas中,也提供了这样一个方法来处理这些事儿。直接上代码: ...
有时在处理连续型数据时,为了方便分析,需要将其进行离散化或者是拆分成“面元(bin)”,即将数据放置于一个小区间中。 在Pandas中,cut()--->数据离散化 qcut()-->面元划分 一、cut():等距离散化,设置的bins的每个区间的间隔相等 ...
pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数 ...