原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是说x ...
假设有一个可导函数f x ,我们的目标函数是求解最小值 min frac f x ,假设x给定的初始值是 x 梯度下降法 将f x 在 x 处进行 阶泰勒级数展开: f x f x f x x x 。 则我们的目标函数变成 min frac f x f x x x 即是 f x f x f x Delta x f x Delta x 从而得到: f x f x f x Delta x 即 Delt ...
2019-02-24 20:05 0 816 推荐指数:
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是说x ...
梯度下降法是沿着梯度下降的算法,该算法的收敛速度受梯度大小影响非常大,当梯度小时算法收敛速度非常慢。 牛顿法是通过把目标函数做二阶泰勒展开,通过求解这个近似方程来得到迭代公式,牛顿法的迭代公式中用到了二阶导数来做指导,所以牛顿法的收敛速度很快,但是由于要求二阶导,所以牛顿法的时间复杂度非常高 ...
梯度下降法 梯度下降法用来求解目标函数的极值。这个极值是给定模型给定数据之后在参数空间中搜索找到的。迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha。梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终 ...
目录 一、牛顿法与拟牛顿法 1、牛顿法 1.1 原始牛顿法(假设f凸函数且两阶连续可导,Hessian矩阵非奇异) 算法1.1 牛顿法 1.2 阻尼牛顿法 ...
机器学习的本质是建立优化模型,通过优化方法,不断迭代参数向量,找到使目标函数最优的参数向量。最终建立模型 通常用到的优化方法:梯度下降方法、牛顿法、拟牛顿法等。这些优化方法的本质就是在更新参数。 一、梯度下降法 0、梯度下降的思想 · 通过搜索方向和步长来对参数进行更新。其中搜索 ...
参考知乎:https://www.zhihu.com/question/19723347 这篇博文讲牛顿法讲的非常好:http://blog.csdn.net/itplus/article/details/21896453 梯度下降法 ...
1 梯度下降法 我们使用梯度下降法是为了求目标函数最小值f(X)对应的X,那么我们怎么求最小值点x呢?注意我们的X不一定是一维的,可以是多维的,是一个向量。我们先把f(x)进行泰勒展开: 这里的α是学习速率,是个标量,代表X变化的幅度;d表示的是单位步长,是一个矢量,有方向,单位长度 ...
极值,但总体来说这是很困难的,目前有一些启发式算法可以在某种程度上处理全局极值的计算问题,但是并不能保 ...