原文:主题模型--机器学习

摘要: 两篇文档是否相关往往不只决定于字面上的词语重复,还取决于文字背后的语义关联。对语义关联的挖掘,可以让我们的搜索更加智能化。本文着重介绍了一个语义挖掘的利器:主题模型。主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量互联网数据中自动寻找出文字间的语义主题。近些年来各大互联网公司都开始了这方面的探索和尝试。就让我们看一下究竟吧。 关键词:主 ...

2019-02-17 23:20 0 632 推荐指数:

查看详情

机器学习-LDA主题模型笔记

LDA常见的应用方向:   信息提取和搜索(语义分析);文档分类/聚类、文章摘要、社区挖掘;基于内容的图像聚类、目标识别(以及其他计算机视觉应用);生物信息数据的应用; 对于朴素贝叶斯模型来说,可以胜任许多文本分类问题,但无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析 ...

Thu Oct 10 20:42:00 CST 2019 0 514
机器学习之sklearn——主题模型

from gensim import corpora, models corpus只截取了一部分 lsi = models.LsiModel(corpus_tfidf, num_topics=2, id2word=dic) 将文本的tfidf向量输入生成Lsi模型 ...

Wed Jan 11 18:18:00 CST 2017 0 3218
猪猪的机器学习笔记(十五)主题模型

主题模型 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十五次课在线笔记。主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量互联网数据中自动寻找出文字间的语义主题主题模型在自然语言和基于文本 ...

Sat May 07 00:13:00 CST 2016 0 4546
Spark机器学习(8):LDA主题模型算法

进行,就可以生成一篇文档;反过来,LDA又是一种非监督机器学习技术,可以识别出大规模文档集或语料库中的主 ...

Wed Jul 12 20:19:00 CST 2017 0 2233
机器学习笔记19-----LDA主题模型(重点理解LDA的建模过程)

1.主题模型主要内容及其应用 (1)主要内容 (2)主要应用 2.共轭先验分布 3.Dirichlet分布(狄利克雷分布) 4.LDA的介绍 LDA 在主题模型中占有非常重要的地位,常用来文本分类。LDA由Blei, David M.、Ng, Andrew Y. ...

Fri Apr 17 19:59:00 CST 2020 0 1989
机器学习常用模型

(原作:MSRA刘铁岩著《分布式机器学习:算法、理论与实践》。这一部分叙述很清晰,适合用于系统整理NN知识) 线性模型 线性模型是最简单的,也是最基本的机器学习模型。其数学形式如下:g(X;W)=WTX。有时,我们还会在WTX的基础上额外加入一个偏置项b,不过只要把X扩展出一维常数 ...

Mon Nov 26 18:22:00 CST 2018 0 13720
机器学习模型融合

参考博客:https://blog.csdn.net/qq_31342997/article/details/88078213      https://blog.csdn.net/u0129694 ...

Sun Oct 13 23:23:00 CST 2019 0 363
机器学习模型泛化

机器学习模型泛化 1、机器学习模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。 2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性 ...

Tue Aug 13 19:26:00 CST 2019 0 378
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM