原文:强化学习-策略迭代

. 前言 在强化学习 MDP 马尔可夫决策过程 算法原理中我们已经介绍了强化学习中的基石 MDP,本文的任务是介绍如何通过价值函数,去寻找到最优策略,使得最后得到的奖励尽可能的多。 . 回顾MDP 通过学习MDP我们得到了 个Bellman公式: 状态值函数: v pi s t sum a t pi a t s t sum s t p s t s t,a t r a t s t gamma v ...

2019-02-14 22:49 0 3155 推荐指数:

查看详情

强化学习——值迭代策略迭代

强化学习】值迭代策略迭代强化学习中我们经常会遇到策略迭代与值迭代,但是很多人都搞不清楚他们两个之间的区别,他们其实都是强化学习中的动态规划方法(DP)。 ——《Reinforcement Learning:An Introduction》 (一)值迭代 对每一个当前状态 ...

Wed Sep 18 03:33:00 CST 2019 0 1326
深度强化学习方法 策略迭代 & 值迭代

RL是一个序列化决策过程,核心思想是通过与环境的不断交互学习获得最大回报; 大部分RL方法都是基于MDP的;MDP的本质是获得一个可以使累计收益最大化的策略,并使用该策略选择最佳动作; 动态规划是RL中的一个关键技术,适用于RL中已知模型求解最优策略的特殊情况,主要有 策略迭代 和 值 ...

Sat Sep 26 20:04:00 CST 2020 0 498
强化学习入门之智能走迷宫-策略迭代算法

0x00 机器学习基础 机器学习可分为三类 监督学习 无监督学习 强化学习 三种学习类别的关键点 监督学习需要人为设置参数,设置好标签,然后将数据集分配到不同标签。 无监督学习同样需要设定参数,对无标签的数据集进行分组。 强化学习需要人为设置初始参数 ...

Mon Jun 07 17:48:00 CST 2021 0 342
强化学习-策略迭代代码实现

1. 前言 今天要重代码的角度给大家详细介绍下策略迭代的原理和实现方式。本节完整代码GitHub。 我们开始介绍策略迭代前,先介绍一个蛇棋的游戏 它是我们后面学习的环境,介绍下它的规则: 玩家每人拥有一个棋子,出发点在图中标为“1”的格子处。 依次掷骰子,根据骰子的点数将自 ...

Sat Feb 16 07:31:00 CST 2019 0 1932
强化学习-价值迭代

1. 前言 在策略迭代最后我们发现策略迭代的收敛过程比较慢,那我们就会想有没更好更快的迭代方法,今天我们介绍的价值迭代就是另一种寻找最优策略的解决方案。 2. 动态规划 价值迭代需要用到动态规划的思想,那我们简单的回顾下动态规划的特点。 最优子结构:是指一个子问题的最优解是可以得到 ...

Sat Feb 16 17:12:00 CST 2019 0 1938
强化学习(九):策略梯度

Policy Gradient Methods 之前学过的强化学习几乎都是所谓的‘行动-价值’方法,也就是说这些方法先是学习每个行动在特定状态下的价值,之后在每个状态,根据当每个动作的估计价值进行选择。这种方法可看成是一种‘间接’的方法,因为强化学习的目标是如何决策,这些方法把每个动作的价值 ...

Mon Aug 13 08:10:00 CST 2018 0 1981
强化学习(五)—— 策略梯度及reinforce算法

1 概述   在该系列上一篇中介绍的基于价值的深度强化学习方法有它自身的缺点,主要有以下三点:   1)基于价值的强化学习无法很好的处理连续空间的动作问题,或者时高维度的离散动作空间,因为通过价值更新策略时是需要对每个动作下的价值函数的大小进行比较的,因此在高维或连续的动作空间下是很难 ...

Thu Feb 21 00:23:00 CST 2019 0 996
强化学习入门之智能走迷宫-价值迭代算法

0x01 价值迭代算法基础概念 0x01.1 奖励 若要实现价值迭代,首先要定义价值,在迷宫任务中,到达目标将获得奖励。 特定时间t给出奖励Rt称为即时奖励 未来获得的奖励总和Gt被称为总奖励 Gt=R(t+1)+R(t+2)+R(t+3) 考虑时间因素,需要引入折扣率 ...

Wed Jun 09 23:26:00 CST 2021 0 293
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM