数论四大定理: 威尔逊定理 欧拉定理 孙子定理(中国剩余定理) 费马小定理 1.威尔逊定理 在初等数论中,威尔逊定理给出了判定一个自然数是否为素数的充分必要条件。 当且仅当$p$为素数时 $(p-1)!\equiv -1(mod\ p)$ 简单点说就是,若$p ...
威尔逊定理 概念 p可整除 p 是p为质数的充要条件 欧拉定理 概念 欧拉定理,也称费马 欧拉定理。 若n,a为正整数,且n,a互素,即 gcd a,n ,则 a n mod n 扩展欧拉定理 概念 费马小定理 概念 若 n 是质数,a n ,则 a n mod n a n ,则 a n mod n 若 n 是质数,gcd a,n ,a n n ,则 a n mod n 孙子定理 概念 模数互质时 ...
2019-02-13 16:11 0 574 推荐指数:
数论四大定理: 威尔逊定理 欧拉定理 孙子定理(中国剩余定理) 费马小定理 1.威尔逊定理 在初等数论中,威尔逊定理给出了判定一个自然数是否为素数的充分必要条件。 当且仅当$p$为素数时 $(p-1)!\equiv -1(mod\ p)$ 简单点说就是,若$p ...
中国剩余定理(CRT)的证明 前言 作为数论四大定理之一,中国剩余定理(又名孙子定理)的重要性不言而喻,到底还是自家的东西。 其主要用于求解一元线性同余方程组。 通俗来讲,就是我们从小听到大的问题:“有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?”明明 ...
历史沿革 该定理是以英格兰数学家爱德华·华林的学生约翰·威尔逊命名的,尽管这对师生都未能给出证明。华林于1770年提出该定理,1773年由拉格朗日首次证明。 定理内容 当且仅当p为素数时: \[(p-1)!\equiv -1(mod\ p) \] 或者用其它的表述方法 ...
欧拉定理以及费马小定理的证明 前言 好久没有刷过数论的题了,感觉之前证明过的一些东西都有些忘记了,正好最近在重新学数论,就顺便记下一些定理及证明。 欧拉定理的证明 先写欧拉定理是因为费马小定理本身就是欧拉定理的一个特例,其证明过程本质上是一致 ...
(本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威尔逊定理 2.欧拉定理 3.孙子定理(中国剩余定理) 4.费马小定理 (提示:以后出现(mod p)就表示这个公式是在求余p的条件下 ...
开映射定理和闭图像定理及其应用 - dhchen的文章 - 知乎 https://zhuanlan.zhihu.com/p/28093420 泛函分析随记(一)Hahn-Banach定理 - 陆艺的文章 - 知乎 https://zhuanlan.zhihu.com/p/53079862 ...
呵呵,我又来了,好久没写日志了,啦啦啦…… 以前说过的,这次带来……好吧,如题。先从自认为简单些的开始吧。 ①威尔逊定理 这个定理是说,对于任意自然数q,当且仅当q是质数时,(q-1)!≡q-1(mod q); 那么,怎么证明咧 ...
今天看到了费马大定理,初中生都知道的a^2 + b^2 = c^2(本原勾股数组有无数正整数解),费尔马推广一下,后来欧拉证明n=3,没有整数解,后来狄利克和勒让德证明5次方程无解。。。。。。,三百多年后,天才数学家怀尔斯在多人的基础上,运用现代数论与代数几何中许多深刻的结果与方法,用非常复杂 ...