Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一。Seq2seq被广泛应用在机器翻译、聊天机器人甚至是图像生成文字等情境。 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是 ...
注意力seq seq模型 大部分的seq seq模型,对所有的输入,一视同仁,同等处理。 但实际上,输出是由输入的各个重点部分产生的。 比如: 举例使用,实际比重不是这样 对于输出 晚上 , 各个输入所占比重: 今天 ,晚上 ,吃 ,什么 对于输出 吃 , 各个输入所占比重: 今天 ,晚上 ,吃 ,什么 特别是在seq seq的看图说话应用情景中 睡觉还握着笔的baby 这里的重点就是baby,笔 ...
2019-01-26 12:44 0 603 推荐指数:
Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一。Seq2seq被广泛应用在机器翻译、聊天机器人甚至是图像生成文字等情境。 seq2seq 是一个Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是 ...
Seq2Seq模型 传统的机器翻译的方法往往是基于单词与短语的统计,以及复杂的语法结构来完成的。基于序列的方式,可以看成两步,分别是 Encoder 与 Decoder,Encoder 阶段就是将输入的单词序列(单词向量)变成上下文向量,然后 decoder根据这个向量来预测翻译 ...
使用典型seq2seq模型,得到的结果欠佳,怎么解决 结果欠佳原因在这里 在训练阶段的decoder,是将目标样本["吃","兰州","拉面"]作为输入下一个预测分词的输入。 而在预测阶段的decoder,是将上一个预测结果,作为下一个预测值的输入。(注意查看预测多的箭头) 这个差异 ...
1. Attention与Transformer模型 Attention机制与Transformer模型,以及基于Transformer模型的预训练模型BERT的出现,对NLP领域产生了变革性提升。现在在大型NLP任务、比赛中,基本很少能见到RNN的影子了。大部分是BERT(或是其各种变体 ...
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用。 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型 ...
2019-09-10 19:29:26 问题描述:什么是Seq2Seq模型?Seq2Seq模型在解码时有哪些常用办法? 问题求解: Seq2Seq模型是将一个序列信号,通过编码解码生成一个新的序列信号,通常用于机器翻译、语音识别、自动对话等任务。在Seq2Seq模型提出之前,深度学习网 ...
1. 什么是seq2seq 在⾃然语⾔处理的很多应⽤中,输⼊和输出都可以是不定⻓序列。以机器翻译为例,输⼊可以是⼀段不定⻓的英语⽂本序列,输出可以是⼀段不定⻓的法语⽂本序列,例如: 英语输⼊:“They”、“are”、“watching”、“.” 法语输出:“Ils ...
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一、Seq2Seq 模型 1. 简介 Sequence-to-sequence (seq2seq) 模型,顾名思义,其输入是一个序列,输出也是一个序列 ...