算法的本质 用三重循环来清算每个点 对 缩小相邻任意“点对儿”距离的贡献 即每个顶点都有可能使得另外两个顶点之间的距离变短 贡献核心在于两边之和大于第三边 清算完成后即得任意两点的最短路径 算法的基本思想 最开始只允许经过1号顶点进行中转 接下 ...
https: cloud.tencent.com developer article 为了能讲明白弗洛伊德 Floyd 算法的主要思想,我们先来看最简单的案例。图 的左图是一个简单的 个顶点的连通网图。 我们先定义两个二维数组D 和P , D代表顶点与顶点的最短路径权值和的矩阵。P代表对应顶点的最短路径的前驱矩阵。在未分析任何顶点之前,我们将D命名为D ,其实它就是初始图的邻接矩阵。将P命名为P ...
2019-01-15 16:08 0 585 推荐指数:
算法的本质 用三重循环来清算每个点 对 缩小相邻任意“点对儿”距离的贡献 即每个顶点都有可能使得另外两个顶点之间的距离变短 贡献核心在于两边之和大于第三边 清算完成后即得任意两点的最短路径 算法的基本思想 最开始只允许经过1号顶点进行中转 接下 ...
弗洛伊德算法大致有点像dp的推导 dp[i][j] = min(dp[i][k] + dp[k][j], dp[i][j]), 其中 i 是起始点,j 是终止点。k是它们经过的中途点。 通过这个公式不断地更新dp[i][j],得到最短路径长。 我们先定义两个矩阵,minpath[i ...
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选。时间复杂度为O(n3),n为顶点数。 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有顶点至所有顶点的的最短路径计算,代码及其简洁 JS实现 ...
下图左部分是一个最简单的3个顶点连通网图。 先定义两个数组D[3][3]和P[3][3],D代表顶点到顶点的最短路径权值和的矩阵,P代表对应顶点的最小路径的前驱矩阵。在未分析任何顶点之前,我们将D命名为D-1 ,其实它就是初始的图的邻接矩阵。将P命名为P-1 ,初始化为图中所示的矩阵 ...
最短路径 最短路径问题是图的一个经典问题,常用的求最短路径的方法有 (迪杰斯特拉)Dijkstra算法,(弗洛伊德)Floyd算法。 Dijkstra算法用于求单源点最短路径问题,复杂度为O(n2),而Floyd算法用于求对每一对顶点之间的最短路问题(采用枚举法,枚举所有 ...
转自大神:https://www.cnblogs.com/wangyuliang/p/9216365.html !!!!!!!!!!!!!!!!!!!!!!!!!注意 迪杰斯特拉算法和弗洛伊德算法(求最短路径) 都是有向图!!!!单边的 Floyd-傻子也能看懂 ...
【1】为什么需要弗洛伊德算法? 带权图中单个源点到所有顶点的最短路径问题可以用《迪杰斯特拉算法》求解。 那如果要求图中每一个顶点与其它顶点之间的最短路径呢?类似可以想到的方法为: 每次以一个顶点为源点,重复执行地杰斯特拉算法算法n次。 这样,理论上我们便可以求得每一个顶点与其它顶点 ...
求图的最短路径,是一种常考算法。通常有两种算法:可以参考下面的博客: https://blog.51cto.com/gelivable/427009 https://blog.csdn.net/zxq2574043697/article/details/9451887 关于迪杰斯特拉算法 ...