机器学习的模型泛化 1、机器学习的模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。 2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性 ...
原文链接:https: developers.google.com machine learning crash course generalization 泛化是指模型很好地拟合以前未见过的新数据 从用于创建该模型的同一分布中抽取 的能力。 过拟合的风险 机器学习的目标是对从真实概率分布 已隐藏 中抽取的新数据做出良好预测。过拟合模型在训练过程中产生的损失很低,但在预测新数据方面的表现却非常糟糕 ...
2019-01-13 22:59 0 1225 推荐指数:
机器学习的模型泛化 1、机器学习的模型误差主要含有三个方面的误差:模型偏差、模型方差以及不可避免的误差。 2、对于机器学习训练模型的偏差主要因为对于问题本身的假设不对,比如非线性误差假设为线性误差进行训练和预测,算法层面上欠拟合是产生较大偏差的主要原因。另外主要来自于特征参量与最终结果的相关性 ...
本章思路: 根据之前的总结,如果M很大,那么无论假设泛化能力差的概率多小,都无法忽略,所以问题转化为证明M不大,然后上章将其转化为证明成长函数:mh(N)为多项式级别。直接证明似乎很困难,本章继续利用转化的思想,首先想想和mh(N)相关的因素可能有哪些?不难想到目前来看只有两个: 假设 ...
一、什么是多项式回归 直线回归研究的是一个依变量与一个自变量之间的回归问题,但是,在畜禽、水产科学领域的许多实际问题中,影响依变量的自变量往往不止一个,而是多个,比如绵羊的产毛量这一变量同时受到 ...
过拟合是什么呢? 过拟合简单来说就是模型是由训练数据集得来的,得到的模型只针对训练集有更好的预测效果,对于未知的数据集预测效果很差。这其实是由于训练过程中,模型过于偏向于训练数据集,导致模型对训练数据集的拟合效果很好,导致模型失去了泛化能力。 模型的泛化能力即指模型对于未知数据的预测 ...
https://blog.csdn.net/ChenVast/article/details/81385018 符号 涵义 ...
分享一篇如何机器学习如何入门的文章。考虑到机器学习是现在挺热门的技术专业,如果你的本科专业是计算机类的,面临着未来方向的一种选择(吐槽一下,计算机类的方向实在是太多了),那么选择一个比较热门的方向去做是非常OK的。这就像生在一个金庸宇宙,所有的人和事都在说会武功这件事多么的爽快、多么的厉害 ...
指的是一个类(称为子类、子接口)继承另外的一个类(称为父类、父接口)的功能,并可以增加它自己的新功能的能力,继承是类与类或者接口与接口之间最常见的关系;在Java中用extends关键字。 【泛化关系】是一种继承关系,表示一般与特殊的关系,它指定了子类如何特化父类的所有特征和行为 ...
机器学习的专业术语非常多,不需要一开始理解所有的专业术语,这些术语会随着对机器学习的深入,会慢慢理解,水到渠成。 不过在学习的过程中,有一些概念必须要了解,有助于后续的学习与理解,需要了解的核心概念有:监督学习、无监督学习、模型、策略、算法等。 监督学习 监督学习,指的是学习的数据与后续测试 ...