原文:Learning from delayed reward (Q-Learning的提出) (Watkins博士毕业论文)(建立了现在的reinforcement Learning模型)

最近在在学习强化学习方面的东西, 对于现有的很多文章中关于强化学习的知识很是不理解,很多都是一个公式套一个公式,也没有什么太多的解释,感觉像是在看天书一般,经过了较长时间的挣扎最后决定从一些基础的东西开始入手,于是便有了这篇论文的发现。 Learning from Delayed Reward 该论文的页面为: http: www.cs.rhul.ac.uk chrisw thesis.html ...

2019-01-11 20:47 0 905 推荐指数:

查看详情

论文笔记之:Deep Reinforcement Learning with Double Q-learning

Deep Reinforcement Learning with Double Q-learning Google DeepMind   Abstract   主流的 Q-learning 算法过高的估计在特定条件下的动作值。实际上,之前是不知道是否这样的过高估计是 common ...

Mon Jun 27 23:39:00 CST 2016 0 5332
文献笔记:Deep Reinforcement Learning with Double Q-learning

该文章是针对Hado van Hasselt于2010年提出的Double Q-learning算法的进一步拓展,是结合了DQN网络后,提出的关于DQN的Double Q-learning算法。该算法主要目的是修正DQN中max项所产生的过高估计问题,所谓过高估计,在前面的博客Issues ...

Tue Mar 12 03:34:00 CST 2019 0 701
Q-learning

强化学习基本介绍 强化学习是一种不同于监督学习和无监督学习的在线学习技术,基本模型图一所示。它把学习看作是一个“试探一评价”的过程,首先学习系统称为智能体感知环境状态,采取某一个动作作用于环境,环境接受该动作后状态发生变化,同时给出一个回报奖励或惩罚反馈给强化学习系统,强化学系统根据强化信号 ...

Tue Jan 02 06:33:00 CST 2018 0 8939
强化学习(Reinforcement Learning)中的Q-Learning、DQN,面试看这篇就够了!

1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做,而强化学习(Reinforcement Learning, RL)是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报。在很多场景中,当前的行动不仅会影响当前的rewards,还会影响之后的状态和一系列 ...

Mon Aug 19 01:44:00 CST 2019 0 2731
Q-learning算法介绍(2)

前面我们介绍了Q-learning算法的原理,现在我们就一步一步地用实际数值演示一下,给大家一个更直观的认识。 首先我们选择Gamma值的初值为0.8,agent的初始位置是房间1,前面显示的R矩阵不变,Q矩阵所有值都被初始化为0。 由于起始位置是房间1,所以我们先看R矩阵的第二行 ...

Sat Apr 25 11:18:00 CST 2020 0 872
增强学习 | Q-Learning

“价值不是由一次成功决定的,而是在长期的进取中体现” 上文介绍了描述能力更强的多臂赌博机模型,即通过多台机器的方式对环境变量建模,选择动作策略时考虑时序累积奖赏的影响。虽然多臂赌博机模型中引入了价值的概念,但方法在建模过程中本质上是以策略为优化目标,因此又常被 ...

Sat Jul 08 06:32:00 CST 2017 0 1144
Q-learning和Sarsa的区别

Q-learning是off-policy,而Sarsa是on-policy学习。 Q-learning在更新Q table时,它只会需要Q值最大,但是不一定会选择使这个Q值最大的动作,因为选择哪个动作是由其他的策略决定的,但是Sarsa在更新Q table时,不一定是Q最大的那个,而且接下 ...

Thu Aug 15 00:56:00 CST 2019 0 524
Q-learning算法介绍(1)

我们在这里使用一个简单的例子来介绍Q-learning的工作原理。下图是一个房间的俯视图,我们的智能体agent要通过非监督式学习来了解这个陌生的环境。图中的0到4分别对应一个房间,5对应的是建筑物周围的环境。如果房间之间有一个门,那么这2个房间就是直接相通的,否则就要通过其他房间相通 ...

Fri Apr 24 16:06:00 CST 2020 0 885
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM