众所周知,最近我在学习代数几何,最近可能会把之前没搞懂的交换代数认真复习一下。这次的主题是准素分解。朴素的操作可见Atiyah经典的书,但是我们拒绝采用这种没有动机而又不清晰的过程。 首先我们熟知的一个交换代数结果是 定理 对于Nother环$R$,有限生成模$M$,那么存在合成列 ...
上承这篇博文,下面我们来介绍一些准素分解的应用和几何意义。 Krull交定理 一个著名的应用就是Krull交定理。 Krull交定理对于Noether环 R ,理想 mathfrak a ,令 mathfrak a infty bigcap n geq mathfrak a n ,那么 mathfrak a mathfrak a infty mathfrak a infty 作为推论存在 x in ...
2019-01-24 21:46 0 784 推荐指数:
众所周知,最近我在学习代数几何,最近可能会把之前没搞懂的交换代数认真复习一下。这次的主题是准素分解。朴素的操作可见Atiyah经典的书,但是我们拒绝采用这种没有动机而又不清晰的过程。 首先我们熟知的一个交换代数结果是 定理 对于Nother环$R$,有限生成模$M$,那么存在合成列 ...
目录 简介 初等启发 证明过程 几何意义 定理应用 参考资料 简介 在交换代数中有如下定理 Noether正规化引理 令$R$是一个有限生成$k$-代数整环,则存在$t_1,\ldots,t_n\in R$使得$$k\subseteq_ ...
一、什么是线性代数 线性与非线性: 非线性问题则可以在一定基础上转化为线性问题求解 线性空间: 对所谓的要满足"加法"和"数乘"等八条公理的元素的集合 线性函数: 几何意义:过原点的直线、平面、超平面 代数意义:可加性、比例性 可加性(线性的可加性既是没有互相激励的累加,也是 ...
二、向量的基本几何意义 自由向量: 大小和方向(物理:矢量) 向量的数学表示: 把空间中所有的向量的尾部都拉到坐标原点,这样N维点空间可以与N维向量空间建立一一对应关系:N维点空间中点(0,0,0…0)取作原点,那么每一个点都可以让一个向量和它对应,这个向量就是从坐标原点出发到这个点 ...
三、行列式的几何意义: 行列式的定义: 行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个数值,这点请与矩阵区别开来。矩阵只是一个数表,行列式还要对这个数表按照规则进一步计算,最终得到一个实数、复数 ...
考察$\boldsymbol u\cdot\boldsymbol y$的几何意义。 把向量$\boldsymbol y$拆成两个分量:$\boldsymbol y=\boldsymbol{\hat y}+\boldsymbol z$。其中$\boldsymbol{\hat y}=\alpha ...
微分的几何意义 为了对微分有比较直观的了解,我们来说明微分的几何意义. 在直角坐标系中,函数\(y=f(x)\)的图形是一条曲线.对于某一固定的\(x_0\)值,曲线上有一个确定点\(M(x_0,y_0)\),当自变量 x 有微小增量\(\Delta x\)时,就得到曲线上另一点\(N ...
很多文章说到奇异值分解的时候总是大概罗列下它的功能,并没有对功能及物理意义进行过多的阐述,现在我来对奇异值进行整理一下。 一 奇异值分解 对任意的矩阵A∈Fmn,rank(A)=r(矩阵的秩),总可以取A的如下分解:,其中U和V是正交矩阵。分别为左右奇异值向量。 U是m×m阶酉矩阵 ...