深度神经网络模型压缩和加速方法 综合现有的深度模型压缩方法,它们主要分为四类: 1、参数修剪和共享(parameter pruning and sharing) 2、低秩因子分解(low-rank factorization) 3、转移/紧凑卷积滤波器(transferred ...
模型压缩经典的论文总结于此,方便以后查找 Survey Recent Advances in Efficient Computation of Deep Convolutional Neural Networks, arxiv A Survey of Model Compression and Acceleration for Deep Neural Networks arXiv Quantiza ...
2019-01-03 15:03 0 1552 推荐指数:
深度神经网络模型压缩和加速方法 综合现有的深度模型压缩方法,它们主要分为四类: 1、参数修剪和共享(parameter pruning and sharing) 2、低秩因子分解(low-rank factorization) 3、转移/紧凑卷积滤波器(transferred ...
1. NNI简介 NNI是微软发布的一款自动机器学习(AutoML)开源项目,对机器学习生命周期的各个环节做了更加全面的支持,包括特征工程、神经网络架构搜索(NAS)、超参调优和模型压缩在内的步骤,你都能使用自动机器学习算法来完成。 微软自动深度学习工具 NNI 具备以下优势 ...
BP 神经网络中的 BP 为 Back Propagation 的简写,最早它是由Rumelhart、McCelland等科学家于 1986 年提出来的,Rumelhart 并在Nature 上发表了一篇非常著名的文章 《Learning representations ...
Name Year Chararcteristics Paper link LeNet-5 1998 ...
摘要:本文是由华为云数据库创新Lab联合电子科技大学数据与智能实验室发表在顶会CIKM’21的文章,该文章提出首个克服人类移动轨迹数据中普遍存在的多层次周期性、周期偏移现象以及数据稀疏问题的轨迹恢复模型。 本文分享自华为云社区《CIKM'21 PeriodicMove论文解读》,作者:云 ...
A Survey of Model Compression and Acceleration for Deep Neural Networks 一、研究背景 在神经网络方面,早在上个世纪末,Yann LeCun等人已经使用神经网络成功识别了邮件上的手写邮编。至于深度 ...
转自:https://zhuanlan.zhihu.com/p/30548590 大型神经网络具有大量的层级与结点,因此考虑如何减少它们所需要的内存与计算量就显得极为重要,特别是对于在线学习和增量学习等实时应用。此外,近来智能可穿戴设备的流行也为研究员提供了在资源(内存、CPU、能耗和带宽 ...
神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先需要选取一小部分训练数据,这一小部分数据叫做一个batch。然后这一个batch会通过前 ...