原文:深度学习 - 常用优化算法

批量梯度下降BGD Batch Gradient Descent 更新公式: theta theta eta sum i m nabla g theta x i,y i 其中,m 为样本个数 优点:每次更新都会朝着正确的方向进行,最后能够保证收敛于极值点 凸函数收敛于全局极值点,非凸函数可能会收敛于局部极值点 缺点:每次学习时间过长,并且如果训练集很大以至于需要消耗大量的内存,不能进行在线模型参数 ...

2019-05-09 21:57 1 973 推荐指数:

查看详情

深度学习——优化算法[6]

目录 mini-batch 指数加权平均 优化梯度下降法:momentum、RMSprop、Adam 学习率衰减 局部最优问题 一、mini-batch mini-batch:把训练集划分成小点的子集 表示法 $x ...

Tue May 01 05:15:00 CST 2018 0 1125
深度学习优化算法

前言 以下内容是个人学习之后的感悟,转载请注明出处~ Mini-batch梯度下降法   见另一篇文章:梯度下降法。 指数加权平均   其原理如下图所示,以每天的温度为例,每天的温度加权平均值等于β乘以前一天的温度加权平均值,再加上(1-β)乘以 ...

Fri Sep 15 05:01:00 CST 2017 0 1364
深度学习优化算法

。 这里介绍比较常用的小批量梯度下降,以及自适应调整学习率和梯度方向优化的两种算法。 一、小批量梯度 ...

Fri Apr 12 17:06:00 CST 2019 0 835
深度学习常用优化算法Optimizer详解

一.优化算法简述 首先来看一下梯度下降最常见的三种变形 BGD,SGD,MBGD,这三种形式的区别就是取决于我们用多少数据来计算目标函数的梯度,这样的话自然就涉及到一个 trade-off,即参数更新的准确率和运行时间。 1.Batch Gradient Descent (BGD) 梯度 ...

Wed Nov 11 01:32:00 CST 2020 0 671
深度学习中的优化算法

深度学习过程中经常会听到**优化 算法云云,优化算法即通过迭代的方法计算目标函数的最优解,为什么要用到优化算法呢? 1、如果是凸优化问题,如果数据量特别大,那么计算梯度非常耗时,因此会选择使用迭代的方法求解,迭代每一步计算量小,且比较容易实现 2、对于非凸问题,只能通过迭代的方法求解,每次 ...

Tue Dec 16 00:58:00 CST 2014 0 4083
深度学习中的优化算法总结

深度学习中的优化问题通常指的是:寻找神经网络上的一组参数θ,它能显著地降低代价函数J(θ)。针对此类问题,研究人员提出了多种优化算法,Sebastian Ruder 在《An overview of gradient descent optimizationalgorithms》(链接 ...

Tue Aug 20 00:17:00 CST 2019 0 3411
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM