原文:什么是监督学习非监督学习,强化学习

机器学习按照学习方式的不同,分为很多的类型,主要的类型分为 监督学习 非监督学习 强化学习 半监督学习 什么是监督学习 利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练。 正如下图中给出了好多鸭子的特征那样,指示出那些是鸭子哪些不是鸭子,然后让计算机进行学习,计算机要通过学习才能具有识别各种事物和现象的能力。 用来进行学习的材料就是与被识别对象属于同类的有限数量样本 ...

2018-12-21 21:25 2 2251 推荐指数:

查看详情

机器学习分类之监督学习、无监督学习强化学习

  监督学习是从标注数据中学习模型的机器学习问题,是统计学习或机器学习的重要组成部分。赫尔伯特·西蒙(Herbert A. Simon)曾对“学习”给出以下定义:“如果一个系统能够通过执行某个过程改进它的性能,这就是学习。”按照这一观点,统计学习就是计算机系统通过运用数据及统计方法提高系统性能 ...

Mon Jul 27 18:14:00 CST 2020 1 888
监督学习、无监督学习以及强化学习

定义 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。一句话:给定数据,预测标签。 无监督学习是机器学习任务的一种。它从无标记的训练数据中推断结论。最典型的无监督学习就是聚类分析,它可以在探索性数据分析 ...

Wed Mar 23 19:06:00 CST 2022 0 855
监督学习

监督学习:全部使用含有标签的数据来训练分类器。 无监督学习:具有数据集但无标签(即聚类)。 半监督学习:使用大量含有标签的数据和少量不含标签的数据进行训练分类或者聚类。 半监督学习:纯半监督学习和直推式学习 纯半监督学习和直推式学习的区别: 半监督学习学习使并不知道最终 ...

Wed Feb 28 07:06:00 CST 2018 0 1151
监督学习

转自:https://zhuanlan.zhihu.com/p/108906502 1. 什么是自监督学习? 自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。 2.如何评测 ...

Wed Nov 18 03:54:00 CST 2020 0 1378
监督学习

1 监督学习   利用一组带标签的数据, 学习从输入到输出的映射, 然后将这种映射关系应用到未知数据, 达到分类或者回归的目的   (1) 分类: 当输出是离散的, 学习任务为分类任务          输入: 一组有标签的训练数据(也叫观察和评估), 标签表明了这些数据(观察)的所属类别 ...

Fri May 26 19:27:00 CST 2017 0 3240
监督学习

最近的一段时间一直在学习监督学习算法,目前,国内的南京大学周志华老师是这方面的泰斗,写了很多这方面牛的文章,可以参考一下他的主页:http://cs.nju.edu.cn/zhouzh/。在国内的学术界周老师一直是我比较钦佩的人之一。下面贴出来的文章出自周老师之手,通俗易懂 ...

Fri May 11 23:15:00 CST 2012 4 31341
机器学习强化学习监督学习、无监督学习强化学习的区别

监督学习(Supervised learning) 监督学习即具有特征(feature)和标签(label)的,即使数据是没有标签的,也可以通过学习特征和标签之间的关系,判断出标签--分类。 简而言之:提供数据,预测标签。比如对动物猫和狗图片进行预测,预测label为cat或者dog ...

Wed Nov 11 06:05:00 CST 2020 0 1165
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM