混合和EM算法中讨论的高斯混合就是典型的含有隐变量的例子,已经给出EM算法在高斯混合模型中的运用,下面 ...
. EM算法 数学基础 . EM算法 原理详解 . EM算法 高斯混合模型GMM . EM算法 高斯混合模型GMM详细代码实现 . EM算法 高斯混合模型GMM Lasso . 前言 概率模型有时既含有观测变量 observable variable ,又含有隐变量或潜在变量 latent variable ,如果仅有观测变量,那么给定数据就能用极大似然估计或贝叶斯估计来估计model参数 但是 ...
2018-12-15 16:31 0 2899 推荐指数:
混合和EM算法中讨论的高斯混合就是典型的含有隐变量的例子,已经给出EM算法在高斯混合模型中的运用,下面 ...
转自:https://www.cnblogs.com/Gabby/p/5344658.html 我讲EM算法的大概流程主要三部分:需要的预备知识、EM算法详解和对EM算法的改进。 一、EM算法的预备知识 1、极大似然估计 (1)举例说明:经典问题——学生身高问题 我们需要调查我们学校 ...
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等。本文就对EM算法的原理做一个总结。 1. EM算法要解决的问题 我们经常会从样本 ...
曾为培训讲师,由于涉及公司版权问题,现文章内容全部重写,地址为https://www.cnblogs.com/nickchen121/p/11686958.html。 更新、更全的Python相关更新 ...
参考: 从最大似然到EM算法浅解 (EM算法)The EM Algorithm EM算法的九层境界:Hinton和Jordan理解的EM算法 在EM算法的证明中,其实比较好理解,总结如下: 从最大似然估计出发 ====> 将隐变量暴露出来,写出累加/积分的 形式 ...
EM算法有很多的应用: 最广泛的就是GMM混合高斯模型、聚类、HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然函数估计值的一般步骤: (1)写出似然函数; (2)对似然函数取对数,并整理 ...
用。 二、算法 1. 前言 1.1 EM会涉及一些数学知识,比如最大似然估计和Jensen不等式等知 ...
极大似然算法 本来打算把别人讲的好的博文放在上面的,但是感觉那个适合看着玩,我看过之后感觉懂了,然后实际应用就不会了。。。。 MLP其实就是用来求模型参数的,核心就是“模型已知,求取参数”,模型的意思就是数据符合什么函数,比如我们硬币的正反就是二项分布模型 ...