http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with Convolutions 2. Inception[V2]: Batch ...
目录 在CIFAR 上的正确率 在CIFAR 上的正确率 这里我都是取了最好的结果,同一模型还有更细致的对比实验,详情参见实验对比。 MODEL ACCURACY VGG . BN VGG . BN Inception . Inception v . ResNet v . ResNet v . 这里只讲解了ResNet,更多代码见 我的GitHub ResNet的pytorch实现 普通残差模块 ...
2018-12-14 22:28 0 2893 推荐指数:
http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with Convolutions 2. Inception[V2]: Batch ...
零、Inception-Resnet-V2的网络模型 整体结构如下,整体设计简洁直观: 其中的stem部分网络结构如下,inception设计,并且conv也使用了7*1+1*7这种优化形式: inception-resnet-A部分设计,inception+残差设计 ...
BN的出现大大解决了训练收敛问题。作者主要围绕归一化的操作做了一系列优化思路的阐述,值得细看。 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift ...
网络结构解读之inception系列三:BN-Inception(Inception V2) BN的出现大大解决了训练收敛问题。作者主要围绕归一化的操作做了一系列优化思路的阐述,值得细看。 Batch Normalization: Accelerating Deep ...
从GoogLeNet至Inception v3 一.CNN发展纵览 我们先来看一张图片: 1985年,Rumelhart和Hinton等人提出了后向传播(Back Propagation,BP ...
网络结构解读之inception系列二:GoogLeNet(Inception V1) inception系列的开山之作,有网络结构设计的初期思考。 Going deeper with convolutions motivations ...
inception系列的开山之作,有网络结构设计的初期思考。 Going deeper with convolutions motivations: 提高模型性能的最直接方式:1.加深(增加层)2.加宽(增加单层的神经元个数) 带来的两个弊端:1.大规模的参数 ...
一、基本概念 Residual Connection: 本质是“短路连接” 如下图阴影部分,通过增加shortcuts,加速训练,从而可以训练出更深的模型(I.R.v2 > Inception v3)。更深的模型意味着可以学出更多东西,带来精度的提升。 I.R. ...