一. 概述 在大数据的静态数据处理中,目前普遍采用的是用Spark+Hdfs(Hive/Hbase)的技术架构来对数据进行处理。 但有时候有其他的需求,需要从其他不同数据源不间断得采集数据,然后存储到Hdfs中进行处理。而追加(append)这种操作在Hdfs里面明显是比较麻烦的一件事。所幸 ...
一. 概述 上一篇我们介绍了如何将数据从mysql抛到kafka,这次我们就专注于利用storm将数据写入到hdfs的过程,由于storm写入hdfs的可定制东西有些多,我们先不从kafka读取,而先自己定义一个Spout数据充当数据源,下章再进行整合。这里默认你是拥有一定的storm知识的基础,起码知道Spout和bolt是什么。 写入hdfs可以有以下的定制策略: 自定义写入文件的名字 定义写 ...
2018-12-12 21:05 0 839 推荐指数:
一. 概述 在大数据的静态数据处理中,目前普遍采用的是用Spark+Hdfs(Hive/Hbase)的技术架构来对数据进行处理。 但有时候有其他的需求,需要从其他不同数据源不间断得采集数据,然后存储到Hdfs中进行处理。而追加(append)这种操作在Hdfs里面明显是比较麻烦的一件事。所幸 ...
碰到的问题 (1)线程操作问题,因为单机节点,代码加锁就好了,后续再写 (2) 消费者写hdfs的时候以流的形式写入,但是什么时候关闭流就是一个大问题了,这里引入了 fsDataOutputStream.hsync(); 生产者 ...
1. 参数说明 序号 命令/command 类 说明 1 impor ImportTool 从关系型数据库中导入数据(来自表或者查询语句)到HDFS中 ...
HDFS适合做: 存储大文件。上G、T甚至P。 一次写入,多次读取。并且每次作业都要读取大部分的数据。 搭建在普通商业机群上就可以了。虽然会经常宕机,但HDFS有良好的容错机制。 HDFS不适合做: 实时数据获取。如果有这个需求可以用HBase。 很多小文件 ...
HDFS是什么:HDFS即Hadoop分布式文件系统(Hadoop Distributed Filesystem),以流式数据访问模式来存储超大文件,运行于商用硬件集群上,是管理网络中跨多台计算机存储的文件系统。 HDFS不适合用在:要求低时间延迟数据访问的应用,存储大量的小文件,多用户写入 ...
该demo基于1.14版本 核心代码: withBucketAssigner(new BucketAssigner<String, String>() ...... 下面是完整代码 ...
本文出处:www.cnblogs.com/langtianya/p/5199529.html 伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样、更加便捷,同时对于信 ...
1.采集日志文件时一个很常见的现象 采集需求:比如业务系统使用log4j生成日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs中。 1.1.根据需求,首先定义一下3大要素: 采集源,即source—监控日志文件内容更新:exec ‘tail -F file’ 下沉目标 ...