原文:sklearn-特征工程之特征选择

title: sklearn 特征工程之特征选择 date: : : categories: skearn tags: sklearn 抄袭 参考资料 使用sklearn做单机特征工程 sckearn中文 周志华 机器学习 当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征: 特征是否发散:如果一个特征不发散,例如方差接近于 ,也就是 ...

2018-12-01 16:45 0 1107 推荐指数:

查看详情

2. 特征工程之特征选择

1. 特征工程之特征预处理 2. 特征工程之特征选择 1. 前言 当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。 2. 特征选择的方法 通常来说,从两个方面考虑来选择特征特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征 ...

Fri Nov 16 18:17:00 CST 2018 0 3106
特征工程之特征选择

    特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡。因此没有统一的方法。这里只是对一些常用的方法做一个总结。本文关注于特征选择部分。后面还有两篇会关注于特征表达和特征预处理。 1. 特征的来源     在做数据分析的时候,特征 ...

Mon May 14 04:13:00 CST 2018 95 35529
sklearn——特征选择

一、关于特征选择 主要参考连接为:参考链接,里面有详细的特征选择内容。 介绍 特征选择特征工程里的一个重要问题,其目标是寻找最优特征子集。特征选择能剔除不相关(irrelevant)或冗余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方 ...

Mon Sep 23 18:04:00 CST 2019 0 638
sklearn特征选择和降维

1.13 特征选择 sklearn.feature_selection模块中的类可以用于样本集上的特征选择/降维,以提高估计器的精度值,或提高其应用在高维数据集上的性能。 1.13.1 删除低方差的特征 VarianceThreshold是一种简单的特征选择baseline方法。它删除了方差 ...

Sat Nov 02 20:45:00 CST 2019 0 664
sklearn特征选择方法及参数

  本文结合sklearn中的特征选择的方法,讲解相关方法函数及参数的含义。 1. 移除低方差特征   方差越大的特征,可以认为是对目标变量越有影响的特征,是我们需要研究的特征。可以利用 VarianceThreshold,移除方差不满足一定阈值的特征。   class ...

Thu Sep 13 18:33:00 CST 2018 0 4904
sklearn特征选择和分类模型

sklearn特征选择和分类模型 数据格式: 这里。原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式。 sklearn中自带 ...

Sun Jul 23 23:29:00 CST 2017 0 2287
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM