1.mixup原理介绍 mixup 论文地址 mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签。最终对标签的处理如下公式所示,这很简 ...
在深度学习中,批量归一化 batch normalization 以及对损失函数加一些正则项这两类方法,一般可以提升模型的性能。这两类方法基本上都属于权重约束,用于减少深度学习神经网络模型对训练数据的过拟合,并改善模型对新数据的性能。 目前,存在多种类型的权重约束方法,例如最大化或单位向量归一化,有些方法也必须需要配置超参数。 在本教程中,使用Keras API,用于向深度学习神经网络模型添加权 ...
2018-11-30 11:45 1 1443 推荐指数:
1.mixup原理介绍 mixup 论文地址 mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签。最终对标签的处理如下公式所示,这很简 ...
pytorch避免过拟合-权重衰减的实现 首先学习基本的概念背景 L0范数是指向量中非0的元素的个数;(L0范数难优化求解) L1范数是指向量中各个元素绝对值之和; L2范数是指向量各元素的平方和然后求平方根。 权重衰减等价于 L2范数正则化(regularization)。正则化通过为模型 ...
背景知识 最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work。于是就花了两个晚上的时间学习了下代码,顺便把核心的内容翻译成中文分享给大家。 首先讲讲对于股票预测的理解,股票是一种可以轻易用数字 ...
参考:Keras 中文文档 参考:开始使用 Keras Sequential 顺序模型 Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺序模型,它由多个网络层线性堆叠。对于更复杂的结构,你应该使用 Keras 函数式 API ...
目录 理论介绍 什么是分类 分类的步骤 什么是决策树 决策树归纳 信息增益 相关理论基础 计算公式 ID3 C4.5 python实现 参考资料 ...
过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。 机器学习模型 ...
一、深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...
过拟合和欠拟合是在网络训练中常常碰到的问题 过拟合(overfit):训练误差小,但是对于测试集上的误差很大。可能模型过于复杂,训练中只”记住”了训练样本,然而其泛化误差却很高。 欠拟合(underfit):训练误差很大,无法找到合适的函数描述数据集 下面介绍这两种情况下 ...