原文:贝叶斯分类算法实例 --根据姓名推测男女

一.从贝叶斯公式开始 贝叶斯分类其实是利用用贝叶斯公式,算出每种情况下发生的概率,再取概率较大的一个分类作为结果。我们先来看看贝叶斯公式: P A B P B A P A P B 其中P A B 是指在事件B发生的情况下事件A发生的概率。 在贝叶斯定理中,每个名词都有约定俗成的名称: P A B 是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。 P A 是A的先验概率 或边缘概 ...

2018-11-29 20:22 4 2351 推荐指数:

查看详情

朴素分类算法

1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 (1)分类:给数据贴标签,通过分析已有的数据特征,对数据分成几类,已知分类结果。然后引入新数据对其归类。分类可以提高认知效率,较低认知成本。 (2)聚类:不知分类结果,通过数据一定的相似性,把那些相似的数据聚集在一起 ...

Mon Nov 19 05:07:00 CST 2018 0 726
Spark 分类算法

  一、贝叶斯定理数学基础   我们都知道条件概率的数学公式形式为   即B发生的条件下A发生的概率等于A和B同时发生的概率除以B发生的概率。   根据此公式变换,得到公式: 即定律是关于随机事件A和B的条件概率(或边缘概率)的一则定律。通常,事件A在事件B发生的条件溪的概率 ...

Thu Sep 14 07:04:00 CST 2017 1 2461
朴素分类算法原理

一个简单的例子 朴素算法是一个典型的统计学习方法,主要理论基础就是一个公式,公式的基本定义如下: 这个公式虽然看上去简单,但它却能总结历史,预知未来。公式的右边是总结历史,公式的左边是预知未来,如果把Y看出类别,X看出特征,P(Yk|X)就是在已知特征X ...

Fri May 05 03:21:00 CST 2017 1 12244
朴素分类算法

贝叶斯定理是关于随机事件A和B的条件概率的一则定理(比如常见的:P(A|B)是在B发生的情况下A发生的可能性)。 朴素的含义是各特征相互独立,且同等重要。某些 分类算法均以贝叶斯定理为基础。由此产生了 朴素分类算法。 朴素分类算法的思想基础是:对于给出 ...

Tue Oct 22 21:54:00 CST 2019 0 579
分类算法 - 朴素

  朴素(Naive Bayesian)是基于贝叶斯定理和特征条件独立假设的一种分类算法。朴素想必是很多人在刚学习机器学习时想去第一个学习的算法,因为它朴素呀、简单呀(我记得当时的想法就是这样)。它真的那么简单么?今天我们就来讨论一下这个“简单”的机器学习算法。 贝叶斯定理 ...

Wed Nov 08 00:06:00 CST 2017 0 1305
朴素算法实例

的应用 过滤垃圾邮件 贝叶斯分类器的著名的应用就是垃圾邮件过滤了,这方面推荐想详细了解的可以去看看《黑客与画家》或是《数学之美》中对应的章节,的基础实现看这里 数据集 两个文件夹,分别是正常邮件和垃圾邮件,其中各有25封邮件 测试方法 从50封邮件中随机选取10封 ...

Wed Nov 19 08:06:00 CST 2014 1 3512
分类

朴素分类 1.1、摘要 分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍分类算法的基础——贝叶斯定理。最后,通过实例讨论 ...

Fri Feb 07 23:53:00 CST 2014 1 46521
朴素算法 & 应用实例

转载请注明出处:http://www.cnblogs.com/marc01in/p/4775440.html 引 和师弟师妹聊天时经常提及,若有志于从事数据挖掘、机器学习方面的工作,在大学阶 ...

Tue Sep 01 21:12:00 CST 2015 8 53534
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM