转眼间已经工作了一段时间了,回想起2014年初学机器学习时的付出、艰苦和努力,感觉都是值得的。从现在往前看,我是沿着“计算机->统计学->数据分析->数据挖掘->机器学习->文本挖掘”的路径走过来的,我觉得这个思路还是属于比较传统的进阶方法,学习的内容有不少的冗余 ...
. 文本分类 分词: 中文分词系统 NLPIR 也叫ICTCLAS , 还有庖丁解牛分词器。 召回率 Recall :是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。 精度 Precise :是指检索出的相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率。 文本表示。 也就是文本的向量化。用得比较多的模型是向量空间模型 VSM 。其基本思想是把文档简化 ...
2018-11-29 12:03 0 963 推荐指数:
转眼间已经工作了一段时间了,回想起2014年初学机器学习时的付出、艰苦和努力,感觉都是值得的。从现在往前看,我是沿着“计算机->统计学->数据分析->数据挖掘->机器学习->文本挖掘”的路径走过来的,我觉得这个思路还是属于比较传统的进阶方法,学习的内容有不少的冗余 ...
本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模。这些技术揭示潜在内容中的意义和关系。文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋势识别。 在本篇博客帖中,你将会学习到如何将机器学习技术应用到文本挖掘中。我将会向你展示如何使用 ...
一、文本挖掘定义 文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。 二、文本挖掘步骤 1)读取数据库或本地外部文本文件 2)文本分词 2.1)自定义字典 ...
众所周知,由于缺乏意识和缺乏技术的能力,很多组织的数据都在睡大觉。数据包含这关于客户、伙伴和竞争对手的相关信息,对其进行挖掘,可以提高组织竞争力 在数据洪流(data deluge)面前,文本挖掘的价值是不言而喻的。因为它能够帮助我们减轻信息过载的问题。 什么是文本挖掘 从文本 ...
文本挖掘介绍 文本挖掘:“自动化或半自动化处理文本的过程”,包含了文档聚类、文档分类、自然语言处理、文本变化分析及网络挖掘等领域内容。对于文本处理过程首先需要有分析的语料(text corpus),然后根据这些语料建立半结构化的文本库(text database)。最后生成包含语频 ...
一个暑假回来到了该找工作的紧张时期了。不过项目还是要继续做嘛,╮(╯_╰)╭,放假前用python爬到了一些网页,也尝试着分了词。现在进入文本挖掘阶段吧。 R在数据挖掘和机器学习方面好似很方便,安了试试看。界面跟Matlab有几分相似呢……o(≧v≦)o ...
当我们尝试使用统计机器学习方法解决文本的有关问题时,第一个需要的解决的问题是,如果在计算机中表示出一个文本样本。一种经典而且被广泛运用的文本表示方法,即向量空间模型(VSM),俗称“词袋模型”。 我们首先看一下向量空间模型如何表示一个文本: 空间向量模型需要一个“字典”:文本 ...
分词之后,便是创建文档-词条矩阵了。 本文便是针对于此。正式学习tm(text mining)包 数据读入 在tm 中主要的管理文件的结构被称为语料库(Corpus),代表了一系列的文档集合。语料库是一个概要性的概念,在这里分为动态语料库(Volatile Corpus,作为R 对象保存 ...